/* * FreeRTOS V202212.00 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * https://www.FreeRTOS.org * https://github.com/FreeRTOS * */ /* * Changes from V1.2.3 * + The created tasks now include calls to tskYIELD(), allowing them to be used + with the cooperative scheduler. */ /** * Creates eight tasks, each of which loops continuously performing an (emulated) * floating point calculation. * * All the tasks run at the idle priority and never block or yield. This causes * all eight tasks to time slice with the idle task. Running at the idle priority * means that these tasks will get pre-empted any time another task is ready to run * or a time slice occurs. More often than not the pre-emption will occur mid * calculation, creating a good test of the schedulers context switch mechanism - a * calculation producing an unexpected result could be a symptom of a corruption in * the context of a task. * * \page FlopC flop.c * \ingroup DemoFiles *
*/ #include #include /* Scheduler include files. */ #include "FreeRTOS.h" #include "task.h" #include "print.h" /* Demo program include files. */ #include "flop.h" #define mathSTACK_SIZE ( ( unsigned short ) 512 ) #define mathNUMBER_OF_TASKS ( 8 ) /* Four tasks, each of which performs a different floating point calculation. * Each of the four is created twice. */ static void vCompetingMathTask1( void * pvParameters ); static void vCompetingMathTask2( void * pvParameters ); static void vCompetingMathTask3( void * pvParameters ); static void vCompetingMathTask4( void * pvParameters ); /* These variables are used to check that all the tasks are still running. If a * task gets a calculation wrong it will * stop incrementing its check variable. */ static volatile unsigned short usTaskCheck[ mathNUMBER_OF_TASKS ] = { ( unsigned short ) 0 }; /*-----------------------------------------------------------*/ void vStartMathTasks( unsigned portBASE_TYPE uxPriority ) { xTaskCreate( vCompetingMathTask1, "Math1", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 0 ] ), uxPriority, NULL ); xTaskCreate( vCompetingMathTask2, "Math2", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 1 ] ), uxPriority, NULL ); xTaskCreate( vCompetingMathTask3, "Math3", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 2 ] ), uxPriority, NULL ); xTaskCreate( vCompetingMathTask4, "Math4", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 3 ] ), uxPriority, NULL ); xTaskCreate( vCompetingMathTask1, "Math5", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 4 ] ), uxPriority, NULL ); xTaskCreate( vCompetingMathTask2, "Math6", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 5 ] ), uxPriority, NULL ); xTaskCreate( vCompetingMathTask3, "Math7", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 6 ] ), uxPriority, NULL ); xTaskCreate( vCompetingMathTask4, "Math8", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 7 ] ), uxPriority, NULL ); } /*-----------------------------------------------------------*/ static void vCompetingMathTask1( void * pvParameters ) { portDOUBLE d1, d2, d3, d4; volatile unsigned short * pusTaskCheckVariable; const portDOUBLE dAnswer = ( 123.4567 + 2345.6789 ) * -918.222; const char * const pcTaskStartMsg = "Math task 1 started.\r\n"; const char * const pcTaskFailMsg = "Math task 1 failed.\r\n"; short sError = pdFALSE; /* Queue a message for printing to say the task has started. */ vPrintDisplayMessage( &pcTaskStartMsg ); /* The variable this task increments to show it is still running is passed in * as the parameter. */ pusTaskCheckVariable = ( unsigned short * ) pvParameters; /* Keep performing a calculation and checking the result against a constant. */ for( ; ; ) { d1 = 123.4567; d2 = 2345.6789; d3 = -918.222; d4 = ( d1 + d2 ) * d3; taskYIELD(); /* If the calculation does not match the expected constant, stop the * increment of the check variable. */ if( fabs( d4 - dAnswer ) > 0.001 ) { vPrintDisplayMessage( &pcTaskFailMsg ); sError = pdTRUE; } if( sError == pdFALSE ) { /* If the calculation has always been correct, increment the check * variable so we know this task is still running okay. */ ( *pusTaskCheckVariable )++; } taskYIELD(); } } /*-----------------------------------------------------------*/ static void vCompetingMathTask2( void * pvParameters ) { portDOUBLE d1, d2, d3, d4; volatile unsigned short * pusTaskCheckVariable; const portDOUBLE dAnswer = ( -389.38 / 32498.2 ) * -2.0001; const char * const pcTaskStartMsg = "Math task 2 started.\r\n"; const char * const pcTaskFailMsg = "Math task 2 failed.\r\n"; short sError = pdFALSE; /* Queue a message for printing to say the task has started. */ vPrintDisplayMessage( &pcTaskStartMsg ); /* The variable this task increments to show it is still running is passed in * as the parameter. */ pusTaskCheckVariable = ( unsigned short * ) pvParameters; /* Keep performing a calculation and checking the result against a constant. */ for( ; ; ) { d1 = -389.38; d2 = 32498.2; d3 = -2.0001; d4 = ( d1 / d2 ) * d3; taskYIELD(); /* If the calculation does not match the expected constant, stop the * increment of the check variable. */ if( fabs( d4 - dAnswer ) > 0.001 ) { vPrintDisplayMessage( &pcTaskFailMsg ); sError = pdTRUE; } if( sError == pdFALSE ) { /* If the calculation has always been correct, increment the check * variable so we know * this task is still running okay. */ ( *pusTaskCheckVariable )++; } taskYIELD(); } } /*-----------------------------------------------------------*/ static void vCompetingMathTask3( void * pvParameters ) { portDOUBLE * pdArray, dTotal1, dTotal2, dDifference; volatile unsigned short * pusTaskCheckVariable; const unsigned short usArraySize = 250; unsigned short usPosition; const char * const pcTaskStartMsg = "Math task 3 started.\r\n"; const char * const pcTaskFailMsg = "Math task 3 failed.\r\n"; short sError = pdFALSE; /* Queue a message for printing to say the task has started. */ vPrintDisplayMessage( &pcTaskStartMsg ); /* The variable this task increments to show it is still running is passed in * as the parameter. */ pusTaskCheckVariable = ( unsigned short * ) pvParameters; pdArray = ( portDOUBLE * ) pvPortMalloc( ( size_t ) 250 * sizeof( portDOUBLE ) ); /* Keep filling an array, keeping a running total of the values placed in the * array. Then run through the array adding up all the values. If the two totals * do not match, stop the check variable from incrementing. */ for( ; ; ) { dTotal1 = 0.0; dTotal2 = 0.0; for( usPosition = 0; usPosition < usArraySize; usPosition++ ) { pdArray[ usPosition ] = ( portDOUBLE ) usPosition + 5.5; dTotal1 += ( portDOUBLE ) usPosition + 5.5; } taskYIELD(); for( usPosition = 0; usPosition < usArraySize; usPosition++ ) { dTotal2 += pdArray[ usPosition ]; } dDifference = dTotal1 - dTotal2; if( fabs( dDifference ) > 0.001 ) { vPrintDisplayMessage( &pcTaskFailMsg ); sError = pdTRUE; } taskYIELD(); if( sError == pdFALSE ) { /* If the calculation has always been correct, increment the check * variable so we know this task is still running okay. */ ( *pusTaskCheckVariable )++; } } } /*-----------------------------------------------------------*/ static void vCompetingMathTask4( void * pvParameters ) { portDOUBLE * pdArray, dTotal1, dTotal2, dDifference; volatile unsigned short * pusTaskCheckVariable; const unsigned short usArraySize = 250; unsigned short usPosition; const char * const pcTaskStartMsg = "Math task 4 started.\r\n"; const char * const pcTaskFailMsg = "Math task 4 failed.\r\n"; short sError = pdFALSE; /* Queue a message for printing to say the task has started. */ vPrintDisplayMessage( &pcTaskStartMsg ); /* The variable this task increments to show it is still running is passed in * as the parameter. */ pusTaskCheckVariable = ( unsigned short * ) pvParameters; pdArray = ( portDOUBLE * ) pvPortMalloc( ( size_t ) 250 * sizeof( portDOUBLE ) ); /* Keep filling an array, keeping a running total of the values placed in the * array. Then run through the array adding up all the values. If the two totals * do not match, stop the check variable from incrementing. */ for( ; ; ) { dTotal1 = 0.0; dTotal2 = 0.0; for( usPosition = 0; usPosition < usArraySize; usPosition++ ) { pdArray[ usPosition ] = ( portDOUBLE ) usPosition * 12.123; dTotal1 += ( portDOUBLE ) usPosition * 12.123; } taskYIELD(); for( usPosition = 0; usPosition < usArraySize; usPosition++ ) { dTotal2 += pdArray[ usPosition ]; } dDifference = dTotal1 - dTotal2; if( fabs( dDifference ) > 0.001 ) { vPrintDisplayMessage( &pcTaskFailMsg ); sError = pdTRUE; } taskYIELD(); if( sError == pdFALSE ) { /* If the calculation has always been correct, increment the check * variable so we know this task is still running okay. */ ( *pusTaskCheckVariable )++; } } } /*-----------------------------------------------------------*/ /* This is called to check that all the created tasks are still running. */ portBASE_TYPE xAreMathsTaskStillRunning( void ) { /* Keep a history of the check variables so we know if they have been incremented * since the last call. */ static unsigned short usLastTaskCheck[ mathNUMBER_OF_TASKS ] = { ( unsigned short ) 0 }; portBASE_TYPE xReturn = pdTRUE, xTask; /* Check the maths tasks are still running by ensuring their check variables * are still incrementing. */ for( xTask = 0; xTask < mathNUMBER_OF_TASKS; xTask++ ) { if( usTaskCheck[ xTask ] == usLastTaskCheck[ xTask ] ) { /* The check has not incremented so an error exists. */ xReturn = pdFALSE; } usLastTaskCheck[ xTask ] = usTaskCheck[ xTask ]; } return xReturn; }