330 lines
12 KiB
C
330 lines
12 KiB
C
/*
|
|
* FreeRTOS V202212.00
|
|
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
* the Software, and to permit persons to whom the Software is furnished to do so,
|
|
* subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* https://www.FreeRTOS.org
|
|
* https://github.com/FreeRTOS
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Changes from V1.2.3
|
|
*
|
|
+ The created tasks now include calls to tskYIELD(), allowing them to be used
|
|
+ with the cooperative scheduler.
|
|
*/
|
|
|
|
/**
|
|
* Creates eight tasks, each of which loops continuously performing an (emulated)
|
|
* floating point calculation.
|
|
*
|
|
* All the tasks run at the idle priority and never block or yield. This causes
|
|
* all eight tasks to time slice with the idle task. Running at the idle priority
|
|
* means that these tasks will get pre-empted any time another task is ready to run
|
|
* or a time slice occurs. More often than not the pre-emption will occur mid
|
|
* calculation, creating a good test of the schedulers context switch mechanism - a
|
|
* calculation producing an unexpected result could be a symptom of a corruption in
|
|
* the context of a task.
|
|
*
|
|
* \page FlopC flop.c
|
|
* \ingroup DemoFiles
|
|
* <HR>
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
|
|
/* Scheduler include files. */
|
|
#include "FreeRTOS.h"
|
|
#include "task.h"
|
|
#include "print.h"
|
|
|
|
/* Demo program include files. */
|
|
#include "flop.h"
|
|
|
|
#define mathSTACK_SIZE ( ( unsigned short ) 512 )
|
|
#define mathNUMBER_OF_TASKS ( 8 )
|
|
|
|
/* Four tasks, each of which performs a different floating point calculation.
|
|
* Each of the four is created twice. */
|
|
static void vCompetingMathTask1( void * pvParameters );
|
|
static void vCompetingMathTask2( void * pvParameters );
|
|
static void vCompetingMathTask3( void * pvParameters );
|
|
static void vCompetingMathTask4( void * pvParameters );
|
|
|
|
/* These variables are used to check that all the tasks are still running. If a
|
|
* task gets a calculation wrong it will
|
|
* stop incrementing its check variable. */
|
|
static volatile unsigned short usTaskCheck[ mathNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vStartMathTasks( unsigned portBASE_TYPE uxPriority )
|
|
{
|
|
xTaskCreate( vCompetingMathTask1, "Math1", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 0 ] ), uxPriority, NULL );
|
|
xTaskCreate( vCompetingMathTask2, "Math2", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 1 ] ), uxPriority, NULL );
|
|
xTaskCreate( vCompetingMathTask3, "Math3", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 2 ] ), uxPriority, NULL );
|
|
xTaskCreate( vCompetingMathTask4, "Math4", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 3 ] ), uxPriority, NULL );
|
|
xTaskCreate( vCompetingMathTask1, "Math5", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 4 ] ), uxPriority, NULL );
|
|
xTaskCreate( vCompetingMathTask2, "Math6", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 5 ] ), uxPriority, NULL );
|
|
xTaskCreate( vCompetingMathTask3, "Math7", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 6 ] ), uxPriority, NULL );
|
|
xTaskCreate( vCompetingMathTask4, "Math8", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 7 ] ), uxPriority, NULL );
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void vCompetingMathTask1( void * pvParameters )
|
|
{
|
|
portDOUBLE d1, d2, d3, d4;
|
|
volatile unsigned short * pusTaskCheckVariable;
|
|
const portDOUBLE dAnswer = ( 123.4567 + 2345.6789 ) * -918.222;
|
|
const char * const pcTaskStartMsg = "Math task 1 started.\r\n";
|
|
const char * const pcTaskFailMsg = "Math task 1 failed.\r\n";
|
|
short sError = pdFALSE;
|
|
|
|
/* Queue a message for printing to say the task has started. */
|
|
vPrintDisplayMessage( &pcTaskStartMsg );
|
|
|
|
/* The variable this task increments to show it is still running is passed in
|
|
* as the parameter. */
|
|
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
|
|
|
|
/* Keep performing a calculation and checking the result against a constant. */
|
|
for( ; ; )
|
|
{
|
|
d1 = 123.4567;
|
|
d2 = 2345.6789;
|
|
d3 = -918.222;
|
|
|
|
d4 = ( d1 + d2 ) * d3;
|
|
|
|
taskYIELD();
|
|
|
|
/* If the calculation does not match the expected constant, stop the
|
|
* increment of the check variable. */
|
|
if( fabs( d4 - dAnswer ) > 0.001 )
|
|
{
|
|
vPrintDisplayMessage( &pcTaskFailMsg );
|
|
sError = pdTRUE;
|
|
}
|
|
|
|
if( sError == pdFALSE )
|
|
{
|
|
/* If the calculation has always been correct, increment the check
|
|
* variable so we know this task is still running okay. */
|
|
( *pusTaskCheckVariable )++;
|
|
}
|
|
|
|
taskYIELD();
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void vCompetingMathTask2( void * pvParameters )
|
|
{
|
|
portDOUBLE d1, d2, d3, d4;
|
|
volatile unsigned short * pusTaskCheckVariable;
|
|
const portDOUBLE dAnswer = ( -389.38 / 32498.2 ) * -2.0001;
|
|
const char * const pcTaskStartMsg = "Math task 2 started.\r\n";
|
|
const char * const pcTaskFailMsg = "Math task 2 failed.\r\n";
|
|
short sError = pdFALSE;
|
|
|
|
/* Queue a message for printing to say the task has started. */
|
|
vPrintDisplayMessage( &pcTaskStartMsg );
|
|
|
|
/* The variable this task increments to show it is still running is passed in
|
|
* as the parameter. */
|
|
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
|
|
|
|
/* Keep performing a calculation and checking the result against a constant. */
|
|
for( ; ; )
|
|
{
|
|
d1 = -389.38;
|
|
d2 = 32498.2;
|
|
d3 = -2.0001;
|
|
|
|
d4 = ( d1 / d2 ) * d3;
|
|
|
|
taskYIELD();
|
|
|
|
/* If the calculation does not match the expected constant, stop the
|
|
* increment of the check variable. */
|
|
if( fabs( d4 - dAnswer ) > 0.001 )
|
|
{
|
|
vPrintDisplayMessage( &pcTaskFailMsg );
|
|
sError = pdTRUE;
|
|
}
|
|
|
|
if( sError == pdFALSE )
|
|
{
|
|
/* If the calculation has always been correct, increment the check
|
|
* variable so we know
|
|
* this task is still running okay. */
|
|
( *pusTaskCheckVariable )++;
|
|
}
|
|
|
|
taskYIELD();
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void vCompetingMathTask3( void * pvParameters )
|
|
{
|
|
portDOUBLE * pdArray, dTotal1, dTotal2, dDifference;
|
|
volatile unsigned short * pusTaskCheckVariable;
|
|
const unsigned short usArraySize = 250;
|
|
unsigned short usPosition;
|
|
const char * const pcTaskStartMsg = "Math task 3 started.\r\n";
|
|
const char * const pcTaskFailMsg = "Math task 3 failed.\r\n";
|
|
short sError = pdFALSE;
|
|
|
|
/* Queue a message for printing to say the task has started. */
|
|
vPrintDisplayMessage( &pcTaskStartMsg );
|
|
|
|
/* The variable this task increments to show it is still running is passed in
|
|
* as the parameter. */
|
|
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
|
|
|
|
pdArray = ( portDOUBLE * ) pvPortMalloc( ( size_t ) 250 * sizeof( portDOUBLE ) );
|
|
|
|
/* Keep filling an array, keeping a running total of the values placed in the
|
|
* array. Then run through the array adding up all the values. If the two totals
|
|
* do not match, stop the check variable from incrementing. */
|
|
for( ; ; )
|
|
{
|
|
dTotal1 = 0.0;
|
|
dTotal2 = 0.0;
|
|
|
|
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
|
|
{
|
|
pdArray[ usPosition ] = ( portDOUBLE ) usPosition + 5.5;
|
|
dTotal1 += ( portDOUBLE ) usPosition + 5.5;
|
|
}
|
|
|
|
taskYIELD();
|
|
|
|
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
|
|
{
|
|
dTotal2 += pdArray[ usPosition ];
|
|
}
|
|
|
|
dDifference = dTotal1 - dTotal2;
|
|
|
|
if( fabs( dDifference ) > 0.001 )
|
|
{
|
|
vPrintDisplayMessage( &pcTaskFailMsg );
|
|
sError = pdTRUE;
|
|
}
|
|
|
|
taskYIELD();
|
|
|
|
if( sError == pdFALSE )
|
|
{
|
|
/* If the calculation has always been correct, increment the check
|
|
* variable so we know this task is still running okay. */
|
|
( *pusTaskCheckVariable )++;
|
|
}
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void vCompetingMathTask4( void * pvParameters )
|
|
{
|
|
portDOUBLE * pdArray, dTotal1, dTotal2, dDifference;
|
|
volatile unsigned short * pusTaskCheckVariable;
|
|
const unsigned short usArraySize = 250;
|
|
unsigned short usPosition;
|
|
const char * const pcTaskStartMsg = "Math task 4 started.\r\n";
|
|
const char * const pcTaskFailMsg = "Math task 4 failed.\r\n";
|
|
short sError = pdFALSE;
|
|
|
|
/* Queue a message for printing to say the task has started. */
|
|
vPrintDisplayMessage( &pcTaskStartMsg );
|
|
|
|
/* The variable this task increments to show it is still running is passed in
|
|
* as the parameter. */
|
|
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
|
|
|
|
pdArray = ( portDOUBLE * ) pvPortMalloc( ( size_t ) 250 * sizeof( portDOUBLE ) );
|
|
|
|
/* Keep filling an array, keeping a running total of the values placed in the
|
|
* array. Then run through the array adding up all the values. If the two totals
|
|
* do not match, stop the check variable from incrementing. */
|
|
for( ; ; )
|
|
{
|
|
dTotal1 = 0.0;
|
|
dTotal2 = 0.0;
|
|
|
|
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
|
|
{
|
|
pdArray[ usPosition ] = ( portDOUBLE ) usPosition * 12.123;
|
|
dTotal1 += ( portDOUBLE ) usPosition * 12.123;
|
|
}
|
|
|
|
taskYIELD();
|
|
|
|
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
|
|
{
|
|
dTotal2 += pdArray[ usPosition ];
|
|
}
|
|
|
|
dDifference = dTotal1 - dTotal2;
|
|
|
|
if( fabs( dDifference ) > 0.001 )
|
|
{
|
|
vPrintDisplayMessage( &pcTaskFailMsg );
|
|
sError = pdTRUE;
|
|
}
|
|
|
|
taskYIELD();
|
|
|
|
if( sError == pdFALSE )
|
|
{
|
|
/* If the calculation has always been correct, increment the check
|
|
* variable so we know this task is still running okay. */
|
|
( *pusTaskCheckVariable )++;
|
|
}
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/* This is called to check that all the created tasks are still running. */
|
|
portBASE_TYPE xAreMathsTaskStillRunning( void )
|
|
{
|
|
/* Keep a history of the check variables so we know if they have been incremented
|
|
* since the last call. */
|
|
static unsigned short usLastTaskCheck[ mathNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
|
|
portBASE_TYPE xReturn = pdTRUE, xTask;
|
|
|
|
/* Check the maths tasks are still running by ensuring their check variables
|
|
* are still incrementing. */
|
|
for( xTask = 0; xTask < mathNUMBER_OF_TASKS; xTask++ )
|
|
{
|
|
if( usTaskCheck[ xTask ] == usLastTaskCheck[ xTask ] )
|
|
{
|
|
/* The check has not incremented so an error exists. */
|
|
xReturn = pdFALSE;
|
|
}
|
|
|
|
usLastTaskCheck[ xTask ] = usTaskCheck[ xTask ];
|
|
}
|
|
|
|
return xReturn;
|
|
}
|