347 lines
12 KiB
C
347 lines
12 KiB
C
/*
|
|
* FreeRTOS V202212.00
|
|
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
* this software and associated documentation files (the "Software"), to deal in
|
|
* the Software without restriction, including without limitation the rights to
|
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
* the Software, and to permit persons to whom the Software is furnished to do so,
|
|
* subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* https://www.FreeRTOS.org
|
|
* https://github.com/FreeRTOS
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Creates eight tasks, each of which loops continuously performing a floating
|
|
* point calculation.
|
|
*
|
|
* All the tasks run at the idle priority and never block or yield. This causes
|
|
* all eight tasks to time slice with the idle task. Running at the idle
|
|
* priority means that these tasks will get pre-empted any time another task is
|
|
* ready to run or a time slice occurs. More often than not the pre-emption
|
|
* will occur mid calculation, creating a good test of the schedulers context
|
|
* switch mechanism - a calculation producing an unexpected result could be a
|
|
* symptom of a corruption in the context of a task.
|
|
*/
|
|
|
|
/* Standard includes. */
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
|
|
/* Scheduler include files. */
|
|
#include "FreeRTOS.h"
|
|
#include "task.h"
|
|
|
|
/* Demo program include files. */
|
|
#include "flop.h"
|
|
|
|
#ifndef mathSTACK_SIZE
|
|
#define mathSTACK_SIZE configMINIMAL_STACK_SIZE
|
|
#endif
|
|
|
|
#define mathNUMBER_OF_TASKS ( 4 )
|
|
|
|
/* Four tasks, each of which performs a different floating point calculation.
|
|
* Each of the four is created twice. */
|
|
static portTASK_FUNCTION_PROTO( vCompetingMathTask1, pvParameters );
|
|
static portTASK_FUNCTION_PROTO( vCompetingMathTask2, pvParameters );
|
|
static portTASK_FUNCTION_PROTO( vCompetingMathTask3, pvParameters );
|
|
static portTASK_FUNCTION_PROTO( vCompetingMathTask4, pvParameters );
|
|
|
|
/* These variables are used to check that all the tasks are still running. If a
|
|
* task gets a calculation wrong it will stop setting its check variable. */
|
|
static uint16_t usTaskCheck[ mathNUMBER_OF_TASKS ] = { ( uint16_t ) 0 };
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vStartMathTasks( UBaseType_t uxPriority )
|
|
{
|
|
xTaskCreate( vCompetingMathTask1, "Math1", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 0 ] ), uxPriority, NULL );
|
|
xTaskCreate( vCompetingMathTask2, "Math2", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 1 ] ), uxPriority, NULL );
|
|
xTaskCreate( vCompetingMathTask3, "Math3", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 2 ] ), uxPriority, NULL );
|
|
xTaskCreate( vCompetingMathTask4, "Math4", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 3 ] ), uxPriority, NULL );
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static portTASK_FUNCTION( vCompetingMathTask1, pvParameters )
|
|
{
|
|
volatile portDOUBLE d1, d2, d3, d4;
|
|
volatile uint16_t * pusTaskCheckVariable;
|
|
volatile portDOUBLE dAnswer;
|
|
short sError = pdFALSE;
|
|
|
|
/* Some ports require that tasks that use a hardware floating point unit
|
|
* tell the kernel that they require a floating point context before any
|
|
* floating point instructions are executed. */
|
|
portTASK_USES_FLOATING_POINT();
|
|
|
|
d1 = 123.4567;
|
|
d2 = 2345.6789;
|
|
d3 = -918.222;
|
|
|
|
dAnswer = ( d1 + d2 ) * d3;
|
|
|
|
/* The variable this task increments to show it is still running is passed in
|
|
* as the parameter. */
|
|
pusTaskCheckVariable = ( volatile uint16_t * ) pvParameters;
|
|
|
|
/* Keep performing a calculation and checking the result against a constant. */
|
|
for( ; ; )
|
|
{
|
|
d1 = 123.4567;
|
|
d2 = 2345.6789;
|
|
d3 = -918.222;
|
|
|
|
d4 = ( d1 + d2 ) * d3;
|
|
|
|
#if configUSE_PREEMPTION == 0
|
|
taskYIELD();
|
|
#endif
|
|
|
|
/* If the calculation does not match the expected constant, stop the
|
|
* increment of the check variable. */
|
|
if( fabs( d4 - dAnswer ) > 0.001 )
|
|
{
|
|
sError = pdTRUE;
|
|
}
|
|
|
|
if( sError == pdFALSE )
|
|
{
|
|
/* If the calculation has always been correct then set set the check
|
|
* variable. The check variable will get set to pdFALSE each time
|
|
* xAreMathsTaskStillRunning() is executed. */
|
|
( *pusTaskCheckVariable ) = pdTRUE;
|
|
}
|
|
|
|
#if configUSE_PREEMPTION == 0
|
|
taskYIELD();
|
|
#endif
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static portTASK_FUNCTION( vCompetingMathTask2, pvParameters )
|
|
{
|
|
volatile portDOUBLE d1, d2, d3, d4;
|
|
volatile uint16_t * pusTaskCheckVariable;
|
|
volatile portDOUBLE dAnswer;
|
|
short sError = pdFALSE;
|
|
|
|
/* Some ports require that tasks that use a hardware floating point unit
|
|
* tell the kernel that they require a floating point context before any
|
|
* floating point instructions are executed. */
|
|
portTASK_USES_FLOATING_POINT();
|
|
|
|
d1 = -389.38;
|
|
d2 = 32498.2;
|
|
d3 = -2.0001;
|
|
|
|
dAnswer = ( d1 / d2 ) * d3;
|
|
|
|
|
|
/* The variable this task increments to show it is still running is passed in
|
|
* as the parameter. */
|
|
pusTaskCheckVariable = ( volatile uint16_t * ) pvParameters;
|
|
|
|
/* Keep performing a calculation and checking the result against a constant. */
|
|
for( ; ; )
|
|
{
|
|
d1 = -389.38;
|
|
d2 = 32498.2;
|
|
d3 = -2.0001;
|
|
|
|
d4 = ( d1 / d2 ) * d3;
|
|
|
|
#if configUSE_PREEMPTION == 0
|
|
taskYIELD();
|
|
#endif
|
|
|
|
/* If the calculation does not match the expected constant, stop the
|
|
* increment of the check variable. */
|
|
if( fabs( d4 - dAnswer ) > 0.001 )
|
|
{
|
|
sError = pdTRUE;
|
|
}
|
|
|
|
if( sError == pdFALSE )
|
|
{
|
|
/* If the calculation has always been correct then set set the check
|
|
* variable. The check variable will get set to pdFALSE each time
|
|
* xAreMathsTaskStillRunning() is executed. */
|
|
( *pusTaskCheckVariable ) = pdTRUE;
|
|
}
|
|
|
|
#if configUSE_PREEMPTION == 0
|
|
taskYIELD();
|
|
#endif
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static portTASK_FUNCTION( vCompetingMathTask3, pvParameters )
|
|
{
|
|
volatile portDOUBLE * pdArray, dTotal1, dTotal2, dDifference;
|
|
volatile uint16_t * pusTaskCheckVariable;
|
|
const size_t xArraySize = 10;
|
|
size_t xPosition;
|
|
short sError = pdFALSE;
|
|
|
|
/* Some ports require that tasks that use a hardware floating point unit
|
|
* tell the kernel that they require a floating point context before any
|
|
* floating point instructions are executed. */
|
|
portTASK_USES_FLOATING_POINT();
|
|
|
|
/* The variable this task increments to show it is still running is passed in
|
|
* as the parameter. */
|
|
pusTaskCheckVariable = ( volatile uint16_t * ) pvParameters;
|
|
|
|
pdArray = ( portDOUBLE * ) pvPortMalloc( xArraySize * sizeof( portDOUBLE ) );
|
|
|
|
/* Keep filling an array, keeping a running total of the values placed in the
|
|
* array. Then run through the array adding up all the values. If the two totals
|
|
* do not match, stop the check variable from incrementing. */
|
|
for( ; ; )
|
|
{
|
|
dTotal1 = 0.0;
|
|
dTotal2 = 0.0;
|
|
|
|
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
|
|
{
|
|
pdArray[ xPosition ] = ( portDOUBLE ) xPosition + 5.5;
|
|
dTotal1 += ( portDOUBLE ) xPosition + 5.5;
|
|
}
|
|
|
|
#if configUSE_PREEMPTION == 0
|
|
taskYIELD();
|
|
#endif
|
|
|
|
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
|
|
{
|
|
dTotal2 += pdArray[ xPosition ];
|
|
}
|
|
|
|
dDifference = dTotal1 - dTotal2;
|
|
|
|
if( fabs( dDifference ) > 0.001 )
|
|
{
|
|
sError = pdTRUE;
|
|
}
|
|
|
|
#if configUSE_PREEMPTION == 0
|
|
taskYIELD();
|
|
#endif
|
|
|
|
if( sError == pdFALSE )
|
|
{
|
|
/* If the calculation has always been correct then set set the check
|
|
* variable. The check variable will get set to pdFALSE each time
|
|
* xAreMathsTaskStillRunning() is executed. */
|
|
( *pusTaskCheckVariable ) = pdTRUE;
|
|
}
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static portTASK_FUNCTION( vCompetingMathTask4, pvParameters )
|
|
{
|
|
volatile portDOUBLE * pdArray, dTotal1, dTotal2, dDifference;
|
|
volatile uint16_t * pusTaskCheckVariable;
|
|
const size_t xArraySize = 10;
|
|
size_t xPosition;
|
|
short sError = pdFALSE;
|
|
|
|
/* Some ports require that tasks that use a hardware floating point unit
|
|
* tell the kernel that they require a floating point context before any
|
|
* floating point instructions are executed. */
|
|
portTASK_USES_FLOATING_POINT();
|
|
|
|
/* The variable this task increments to show it is still running is passed in
|
|
* as the parameter. */
|
|
pusTaskCheckVariable = ( volatile uint16_t * ) pvParameters;
|
|
|
|
pdArray = ( portDOUBLE * ) pvPortMalloc( xArraySize * sizeof( portDOUBLE ) );
|
|
|
|
/* Keep filling an array, keeping a running total of the values placed in the
|
|
* array. Then run through the array adding up all the values. If the two totals
|
|
* do not match, stop the check variable from incrementing. */
|
|
for( ; ; )
|
|
{
|
|
dTotal1 = 0.0;
|
|
dTotal2 = 0.0;
|
|
|
|
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
|
|
{
|
|
pdArray[ xPosition ] = ( portDOUBLE ) xPosition * 12.123;
|
|
dTotal1 += ( portDOUBLE ) xPosition * 12.123;
|
|
}
|
|
|
|
#if configUSE_PREEMPTION == 0
|
|
taskYIELD();
|
|
#endif
|
|
|
|
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
|
|
{
|
|
dTotal2 += pdArray[ xPosition ];
|
|
}
|
|
|
|
dDifference = dTotal1 - dTotal2;
|
|
|
|
if( fabs( dDifference ) > 0.001 )
|
|
{
|
|
sError = pdTRUE;
|
|
}
|
|
|
|
#if configUSE_PREEMPTION == 0
|
|
taskYIELD();
|
|
#endif
|
|
|
|
if( sError == pdFALSE )
|
|
{
|
|
/* If the calculation has always been correct then set set the check
|
|
* variable. The check variable will get set to pdFALSE each time
|
|
* xAreMathsTaskStillRunning() is executed. */
|
|
( *pusTaskCheckVariable ) = pdTRUE;
|
|
}
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/* This is called to check that all the created tasks are still running. */
|
|
BaseType_t xAreMathsTaskStillRunning( void )
|
|
{
|
|
BaseType_t xReturn = pdPASS, xTask;
|
|
|
|
/* Check the maths tasks are still running by ensuring their check variables
|
|
* have been set to pdPASS. */
|
|
for( xTask = 0; xTask < mathNUMBER_OF_TASKS; xTask++ )
|
|
{
|
|
if( usTaskCheck[ xTask ] != pdTRUE )
|
|
{
|
|
/* The check has not been set so the associated task has either
|
|
* stalled or detected an error. */
|
|
xReturn = pdFAIL;
|
|
}
|
|
else
|
|
{
|
|
/* Reset the variable so it can be checked again the next time this
|
|
* function is executed. */
|
|
usTaskCheck[ xTask ] = pdFALSE;
|
|
}
|
|
}
|
|
|
|
return xReturn;
|
|
}
|