EBIKE-FreeRTOS/Common/drivers/Atmel/at91lib/peripherals/emac/emac.c

834 lines
31 KiB
C
Raw Normal View History

2024-04-14 18:38:39 +08:00
/* ----------------------------------------------------------------------------
* ATMEL Microcontroller Software Support
* ----------------------------------------------------------------------------
* Copyright (c) 2008, Atmel Corporation
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the disclaimer below.
*
* Atmel's name may not be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* ----------------------------------------------------------------------------
*/
//-----------------------------------------------------------------------------
// Headers
//-----------------------------------------------------------------------------
#include <board.h>
#include "emac.h"
#include <utility/trace.h>
#include <utility/assert.h>
#include <string.h>
//------------------------------------------------------------------------------
// Definitions
//------------------------------------------------------------------------------
/// The buffer addresses written into the descriptors must be aligned so the
/// last few bits are zero. These bits have special meaning for the EMAC
/// peripheral and cannot be used as part of the address.
#define EMAC_ADDRESS_MASK ((unsigned int)0xFFFFFFFC)
#define EMAC_LENGTH_FRAME ((unsigned int)0x0FFF) /// Length of frame mask
// receive buffer descriptor bits
#define EMAC_RX_OWNERSHIP_BIT (1UL << 0)
#define EMAC_RX_WRAP_BIT (1UL << 1)
#define EMAC_RX_SOF_BIT (1UL << 14)
#define EMAC_RX_EOF_BIT (1UL << 15)
// Transmit buffer descriptor bits
#define EMAC_TX_LAST_BUFFER_BIT (1UL << 15)
#define EMAC_TX_WRAP_BIT (1UL << 30)
#define EMAC_TX_USED_BIT (1UL << 31)
//-----------------------------------------------------------------------------
// Circular buffer management
//-----------------------------------------------------------------------------
// Return count in buffer
#define CIRC_CNT(head,tail,size) (((head) - (tail)) & ((size)-1))
// Return space available, 0..size-1
// We always leave one free char as a completely full buffer
// has head == tail, which is the same as empty
#define CIRC_SPACE(head,tail,size) CIRC_CNT((tail),((head)+1),(size))
// Return count up to the end of the buffer.
// Carefully avoid accessing head and tail more than once,
// so they can change underneath us without returning inconsistent results
#define CIRC_CNT_TO_END(head,tail,size) \
({int end = (size) - (tail); \
int n = ((head) + end) & ((size)-1); \
n < end ? n : end;})
// Return space available up to the end of the buffer
#define CIRC_SPACE_TO_END(head,tail,size) \
({int end = (size) - 1 - (head); \
int n = (end + (tail)) & ((size)-1); \
n <= end ? n : end+1;})
// Increment head or tail
#define CIRC_INC(headortail,size) \
headortail++; \
if(headortail >= size) { \
headortail = 0; \
}
#define CIRC_EMPTY(circ) ((circ)->head == (circ)->tail)
#define CIRC_CLEAR(circ) ((circ)->head = (circ)->tail = 0)
//------------------------------------------------------------------------------
// Structures
//------------------------------------------------------------------------------
#ifdef __ICCARM__ // IAR
#pragma pack(4) // IAR
#define __attribute__(...) // IAR
#endif // IAR
/// Describes the type and attribute of Receive Transfer descriptor.
typedef struct _EmacRxTDescriptor {
unsigned int addr;
unsigned int status;
} __attribute__((packed, aligned(8))) EmacRxTDescriptor, *PEmacRxTDescriptor;
/// Describes the type and attribute of Transmit Transfer descriptor.
typedef struct _EmacTxTDescriptor {
unsigned int addr;
unsigned int status;
} __attribute__((packed, aligned(8))) EmacTxTDescriptor, *PEmacTxTDescriptor;
#ifdef __ICCARM__ // IAR
#pragma pack() // IAR
#endif // IAR
/// Descriptors for RX (required aligned by 8)
typedef struct {
volatile EmacRxTDescriptor td[RX_BUFFERS];
EMAC_RxCallback rxCb; /// Callback function to be invoked once a frame has been received
unsigned short idx;
} RxTd;
/// Descriptors for TX (required aligned by 8)
typedef struct {
volatile EmacTxTDescriptor td[TX_BUFFERS];
EMAC_TxCallback txCb[TX_BUFFERS]; /// Callback function to be invoked once TD has been processed
EMAC_WakeupCallback wakeupCb; /// Callback function to be invoked once several TD have been released
unsigned short wakeupThreshold; /// Number of free TD before wakeupCb is invoked
unsigned short head; /// Circular buffer head pointer incremented by the upper layer (buffer to be sent)
unsigned short tail; /// Circular buffer head pointer incremented by the IT handler (buffer sent)
} TxTd;
//------------------------------------------------------------------------------
// Internal variables
//------------------------------------------------------------------------------
// Receive Transfer Descriptor buffer
#ifdef __ICCARM__ // IAR
#pragma data_alignment=8 // IAR
#endif // IAR
static volatile RxTd rxTd;
// Transmit Transfer Descriptor buffer
#ifdef __ICCARM__ // IAR
#pragma data_alignment=8 // IAR
#endif // IAR
static volatile TxTd txTd;
/// Send Buffer
// Section 3.6 of AMBA 2.0 spec states that burst should not cross 1K Boundaries.
// Receive buffer manager writes are burst of 2 words => 3 lsb bits of the address shall be set to 0
#ifdef __ICCARM__ // IAR
#pragma data_alignment=8 // IAR
#endif // IAR
static volatile unsigned char pTxBuffer[TX_BUFFERS * EMAC_TX_UNITSIZE] __attribute__((aligned(8)));
#ifdef __ICCARM__ // IAR
#pragma data_alignment=8 // IAR
#endif // IAR
/// Receive Buffer
static volatile unsigned char pRxBuffer[RX_BUFFERS * EMAC_RX_UNITSIZE] __attribute__((aligned(8)));
/// Statistics
static volatile EmacStats EmacStatistics;
//-----------------------------------------------------------------------------
// Internal functions
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
/// Wait PHY operation complete.
/// Return 1 if the operation completed successfully.
/// May be need to re-implemented to reduce CPU load.
/// \param retry: the retry times, 0 to wait forever until complete.
//-----------------------------------------------------------------------------
static unsigned char EMAC_WaitPhy( unsigned int retry )
{
unsigned int retry_count = 0;
while((AT91C_BASE_EMAC->EMAC_NSR & AT91C_EMAC_IDLE) == 0) {
// Dead LOOP!
if (retry == 0) {
continue;
}
// Timeout check
retry_count++;
if(retry_count >= retry) {
trace_LOG(trace_ERROR, "E: Wait PHY time out\n\r");
return 0;
}
}
return 1;
}
//-----------------------------------------------------------------------------
// Exported functions
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// PHY management functions
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
/// Set MDC clock according to current board clock. Per 802.3, MDC should be
/// less then 2.5MHz.
/// Return 1 if successfully, 0 if MDC clock not found.
//-----------------------------------------------------------------------------
unsigned char EMAC_SetMdcClock( unsigned int mck )
{
int clock_dividor;
if (mck <= 20000000) {
clock_dividor = AT91C_EMAC_CLK_HCLK_8; /// MDC clock = MCK/8
}
else if (mck <= 40000000) {
clock_dividor = AT91C_EMAC_CLK_HCLK_16; /// MDC clock = MCK/16
}
else if (mck <= 80000000) {
clock_dividor = AT91C_EMAC_CLK_HCLK_32; /// MDC clock = MCK/32
}
else if (mck <= 160000000) {
clock_dividor = AT91C_EMAC_CLK_HCLK_64; /// MDC clock = MCK/64
}
else {
trace_LOG(trace_ERROR, "E: No valid MDC clock.\n\r");
return 0;
}
AT91C_BASE_EMAC->EMAC_NCFGR = (AT91C_BASE_EMAC->EMAC_NCFGR & (~AT91C_EMAC_CLK))
| clock_dividor;
return 1;
}
//-----------------------------------------------------------------------------
/// Enable MDI with PHY
//-----------------------------------------------------------------------------
void EMAC_EnableMdio( void )
{
AT91C_BASE_EMAC->EMAC_NCR |= AT91C_EMAC_MPE;
}
//-----------------------------------------------------------------------------
/// Enable MDI with PHY
//-----------------------------------------------------------------------------
void EMAC_DisableMdio( void )
{
AT91C_BASE_EMAC->EMAC_NCR &= ~AT91C_EMAC_MPE;
}
//-----------------------------------------------------------------------------
/// Enable MII mode for EMAC, called once after autonegotiate
//-----------------------------------------------------------------------------
void EMAC_EnableMII( void )
{
AT91C_BASE_EMAC->EMAC_USRIO = AT91C_EMAC_CLKEN;
}
//-----------------------------------------------------------------------------
/// Enable RMII mode for EMAC, called once after autonegotiate
//-----------------------------------------------------------------------------
void EMAC_EnableRMII( void )
{
AT91C_BASE_EMAC->EMAC_USRIO = AT91C_EMAC_CLKEN | AT91C_EMAC_RMII;
}
//-----------------------------------------------------------------------------
/// Read PHY register.
/// Return 1 if successfully, 0 if timeout.
/// \param PhyAddress PHY Address
/// \param Address Register Address
/// \param pValue Pointer to a 32 bit location to store read data
/// \param retry The retry times, 0 to wait forever until complete.
//-----------------------------------------------------------------------------
unsigned char EMAC_ReadPhy(unsigned char PhyAddress,
unsigned char Address,
unsigned int *pValue,
unsigned int retry)
{
AT91C_BASE_EMAC->EMAC_MAN = (AT91C_EMAC_SOF & (0x01 << 30))
| (AT91C_EMAC_CODE & (2 << 16))
| (AT91C_EMAC_RW & (2 << 28))
| (AT91C_EMAC_PHYA & ((PhyAddress & 0x1f) << 23))
| (AT91C_EMAC_REGA & (Address << 18));
if ( EMAC_WaitPhy(retry) == 0 ) {
trace_LOG(trace_ERROR, "TimeOut EMAC_ReadPhy\n\r");
return 0;
}
*pValue = ( AT91C_BASE_EMAC->EMAC_MAN & 0x0000ffff );
return 1;
}
//-----------------------------------------------------------------------------
/// Write PHY register
/// Return 1 if successfully, 0 if timeout.
/// \param PhyAddress PHY Address
/// \param Address Register Address
/// \param Value Data to write ( Actually 16 bit data )
/// \param retry The retry times, 0 to wait forever until complete.
//-----------------------------------------------------------------------------
unsigned char EMAC_WritePhy(unsigned char PhyAddress,
unsigned char Address,
unsigned int Value,
unsigned int retry)
{
AT91C_BASE_EMAC->EMAC_MAN = (AT91C_EMAC_SOF & (0x01 << 30))
| (AT91C_EMAC_CODE & (2 << 16))
| (AT91C_EMAC_RW & (1 << 28))
| (AT91C_EMAC_PHYA & ((PhyAddress & 0x1f) << 23))
| (AT91C_EMAC_REGA & (Address << 18))
| (AT91C_EMAC_DATA & Value) ;
if ( EMAC_WaitPhy(retry) == 0 ) {
trace_LOG(trace_ERROR, "TimeOut EMAC_WritePhy\n\r");
return 0;
}
return 1;
}
//-----------------------------------------------------------------------------
/// Setup the EMAC for the link : speed 100M/10M and Full/Half duplex
/// \param speed Link speed, 0 for 10M, 1 for 100M
/// \param fullduplex 1 for Full Duplex mode
//-----------------------------------------------------------------------------
void EMAC_SetLinkSpeed(unsigned char speed, unsigned char fullduplex)
{
unsigned int ncfgr;
ncfgr = AT91C_BASE_EMAC->EMAC_NCFGR;
ncfgr &= ~(AT91C_EMAC_SPD | AT91C_EMAC_FD);
if (speed) {
ncfgr |= AT91C_EMAC_SPD;
}
if (fullduplex) {
ncfgr |= AT91C_EMAC_FD;
}
AT91C_BASE_EMAC->EMAC_NCFGR = ncfgr;
}
//-----------------------------------------------------------------------------
// EMAC functions
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
/// EMAC Interrupt handler
//-----------------------------------------------------------------------------
void EMAC_Handler(void)
{
volatile EmacTxTDescriptor *pTxTd;
volatile EMAC_TxCallback *pTxCb;
unsigned int isr;
unsigned int rsr;
unsigned int tsr;
unsigned int rxStatusFlag;
unsigned int txStatusFlag;
//trace_LOG(trace_DEBUG, "EMAC_Handler\n\r");
isr = AT91C_BASE_EMAC->EMAC_ISR & AT91C_BASE_EMAC->EMAC_IMR;
rsr = AT91C_BASE_EMAC->EMAC_RSR;
tsr = AT91C_BASE_EMAC->EMAC_TSR;
// RX packet
if ((isr & AT91C_EMAC_RCOMP) || (rsr & AT91C_EMAC_REC)) {
rxStatusFlag = AT91C_EMAC_REC;
// Frame received
EmacStatistics.rx_packets++;
// Check OVR
if (rsr & AT91C_EMAC_OVR) {
rxStatusFlag |= AT91C_EMAC_OVR;
EmacStatistics.rx_ovrs++;
}
// Check BNA
if (rsr & AT91C_EMAC_BNA) {
rxStatusFlag |= AT91C_EMAC_BNA;
EmacStatistics.rx_bnas++;
}
// Clear status
AT91C_BASE_EMAC->EMAC_RSR |= rxStatusFlag;
// Invoke callbacks
if (rxTd.rxCb) {
rxTd.rxCb(rxStatusFlag);
}
}
// TX packet
if ((isr & AT91C_EMAC_TCOMP) || (tsr & AT91C_EMAC_COMP)) {
txStatusFlag = AT91C_EMAC_COMP;
EmacStatistics.tx_comp ++;
// A frame transmitted
// Check RLE
if (tsr & AT91C_EMAC_RLES) {
txStatusFlag |= AT91C_EMAC_RLES;
EmacStatistics.tx_errors++;
}
// Check COL
if (tsr & AT91C_EMAC_COL) {
txStatusFlag |= AT91C_EMAC_COL;
EmacStatistics.collisions++;
}
// Check BEX
if (tsr & AT91C_EMAC_BEX) {
txStatusFlag |= AT91C_EMAC_BEX;
EmacStatistics.tx_exausts++;
}
// Check UND
if (tsr & AT91C_EMAC_UND) {
txStatusFlag |= AT91C_EMAC_UND;
EmacStatistics.tx_underruns++;
}
// Clear status
AT91C_BASE_EMAC->EMAC_TSR |= txStatusFlag;
// Sanity check: Tx buffers have to be scheduled
ASSERT(!CIRC_EMPTY(&txTd),
"-F- EMAC Tx interrupt received meanwhile no TX buffers has been scheduled\n\r");
// Check the buffers
while (CIRC_CNT(txTd.head, txTd.tail, TX_BUFFERS)) {
pTxTd = txTd.td + txTd.tail;
pTxCb = txTd.txCb + txTd.tail;
// Exit if buffer has not been sent yet
if ((pTxTd->status & EMAC_TX_USED_BIT) == 0) {
break;
}
// Notify upper layer that packet has been sent
if (*pTxCb) {
(*pTxCb)(txStatusFlag);
}
CIRC_INC( txTd.tail, TX_BUFFERS );
}
// If a wakeup has been scheduled, notify upper layer that it can send
// other packets, send will be successfull.
if( (CIRC_SPACE(txTd.head, txTd.tail, TX_BUFFERS) >= txTd.wakeupThreshold)
&& txTd.wakeupCb) {
txTd.wakeupCb();
}
}
}
//-----------------------------------------------------------------------------
/// Initialize the EMAC with the emac controller address
/// \param id HW ID for power management
/// \param pTxWakeUpfct Thresold TX Wakeup Callback
/// \param pRxfct RX Wakeup Callback
/// \param pMacAddress Mac Address
/// \param enableCAF enable AT91C_EMAC_CAF if needed by application
/// \param enableNBC AT91C_EMAC_NBC if needed by application
//-----------------------------------------------------------------------------
void EMAC_Init( unsigned char id, const unsigned char *pMacAddress,
unsigned char enableCAF, unsigned char enableNBC )
{
int Index;
unsigned int Address;
// Check parameters
ASSERT(RX_BUFFERS * EMAC_RX_UNITSIZE > EMAC_FRAME_LENTGH_MAX,
"E: RX buffers too small\n\r");
trace_LOG(trace_DEBUG, "EMAC_Init\n\r");
// Power ON
AT91C_BASE_PMC->PMC_PCER = 1 << id;
// Disable TX & RX and more
AT91C_BASE_EMAC->EMAC_NCR = 0;
// disable
AT91C_BASE_EMAC->EMAC_IDR = ~0;
rxTd.idx = 0;
CIRC_CLEAR(&txTd);
// Setup the RX descriptors.
for(Index = 0; Index < RX_BUFFERS; Index++) {
Address = (unsigned int)(&(pRxBuffer[Index * EMAC_RX_UNITSIZE]));
// Remove EMAC_RX_OWNERSHIP_BIT and EMAC_RX_WRAP_BIT
rxTd.td[Index].addr = Address & EMAC_ADDRESS_MASK;
rxTd.td[Index].status = 0;
}
rxTd.td[RX_BUFFERS - 1].addr |= EMAC_RX_WRAP_BIT;
// Setup the TX descriptors.
for(Index = 0; Index < TX_BUFFERS; Index++) {
Address = (unsigned int)(&(pTxBuffer[Index * EMAC_TX_UNITSIZE]));
txTd.td[Index].addr = Address;
txTd.td[Index].status = EMAC_TX_USED_BIT;
}
txTd.td[TX_BUFFERS - 1].status = EMAC_TX_USED_BIT | EMAC_TX_WRAP_BIT;
// Set the MAC address
if( pMacAddress != (unsigned char *)0 ) {
AT91C_BASE_EMAC->EMAC_SA1L = ( ((unsigned int)pMacAddress[3] << 24)
| ((unsigned int)pMacAddress[2] << 16)
| ((unsigned int)pMacAddress[1] << 8 )
| pMacAddress[0] );
AT91C_BASE_EMAC->EMAC_SA1H = ( ((unsigned int)pMacAddress[5] << 8 )
| pMacAddress[4] );
}
// Now setup the descriptors
// Receive Buffer Queue Pointer Register
AT91C_BASE_EMAC->EMAC_RBQP = (unsigned int) (rxTd.td);
// Transmit Buffer Queue Pointer Register
AT91C_BASE_EMAC->EMAC_TBQP = (unsigned int) (txTd.td);
AT91C_BASE_EMAC->EMAC_NCR = AT91C_EMAC_CLRSTAT;
// Clear all status bits in the receive status register.
AT91C_BASE_EMAC->EMAC_RSR = (AT91C_EMAC_OVR | AT91C_EMAC_REC | AT91C_EMAC_BNA);
// Clear all status bits in the transmit status register
AT91C_BASE_EMAC->EMAC_TSR = ( AT91C_EMAC_UBR | AT91C_EMAC_COL | AT91C_EMAC_RLES
| AT91C_EMAC_BEX | AT91C_EMAC_COMP
| AT91C_EMAC_UND );
// Clear interrupts
AT91C_BASE_EMAC->EMAC_ISR;
// Enable the copy of data into the buffers
// ignore broadcasts, and don't copy FCS.
AT91C_BASE_EMAC->EMAC_NCFGR |= (AT91C_EMAC_DRFCS | AT91C_EMAC_PAE);
if( enableCAF == EMAC_CAF_ENABLE ) {
AT91C_BASE_EMAC->EMAC_NCFGR |= AT91C_EMAC_CAF;
}
if( enableNBC == EMAC_NBC_ENABLE ) {
AT91C_BASE_EMAC->EMAC_NCFGR |= AT91C_EMAC_NBC;
}
// Enable Rx and Tx, plus the stats register.
AT91C_BASE_EMAC->EMAC_NCR |= (AT91C_EMAC_TE | AT91C_EMAC_RE | AT91C_EMAC_WESTAT);
// Setup the interrupts for TX (and errors)
AT91C_BASE_EMAC->EMAC_IER = AT91C_EMAC_RXUBR
| AT91C_EMAC_TUNDR
| AT91C_EMAC_RLEX
| AT91C_EMAC_TXERR
| AT91C_EMAC_TCOMP
| AT91C_EMAC_ROVR
| AT91C_EMAC_HRESP;
}
//-----------------------------------------------------------------------------
/// Get the statstic information & reset it
/// \param pStats Pointer to EmacStats structure to copy the informations
/// \param reset Reset the statistics after copy it
//-----------------------------------------------------------------------------
void EMAC_GetStatistics(EmacStats *pStats, unsigned char reset)
{
unsigned int ncrBackup = 0;
trace_LOG(trace_DEBUG, "EMAC_GetStatistics\n\r");
// Sanity check
if (pStats == (EmacStats *) 0) {
return;
}
ncrBackup = AT91C_BASE_EMAC->EMAC_NCR & (AT91C_EMAC_TE | AT91C_EMAC_RE);
// Disable TX/RX
AT91C_BASE_EMAC->EMAC_NCR = ncrBackup & ~(AT91C_EMAC_TE | AT91C_EMAC_RE);
// Copy the informations
memcpy(pStats, (void*)&EmacStatistics, sizeof(EmacStats));
// Reset the statistics
if (reset) {
memset((void*)&EmacStatistics, 0x00, sizeof(EmacStats));
AT91C_BASE_EMAC->EMAC_NCR = ncrBackup | AT91C_EMAC_CLRSTAT;
}
// restore NCR
AT91C_BASE_EMAC->EMAC_NCR = ncrBackup;
}
//-----------------------------------------------------------------------------
/// Send a packet with EMAC.
/// If the packet size is larger than transfer buffer size error returned.
/// \param buffer The buffer to be send
/// \param size The size of buffer to be send
/// \param fEMAC_TxCallback Threshold Wakeup callback
/// \param fWakeUpCb TX Wakeup
/// \return OK, Busy or invalid packet
//-----------------------------------------------------------------------------
unsigned char EMAC_Send(void *pBuffer,
unsigned int size,
EMAC_TxCallback fEMAC_TxCallback)
{
volatile EmacTxTDescriptor *pTxTd;
volatile EMAC_TxCallback *pTxCb;
//trace_LOG(trace_DEBUG, "EMAC_Send\n\r");
// Check parameter
if (size > EMAC_TX_UNITSIZE) {
trace_LOG(trace_ERROR, "-E- EMAC driver does not split send packets.");
trace_LOG(trace_ERROR, " It can send %d bytes max in one packet (%u bytes requested)\n\r",
EMAC_TX_UNITSIZE, size);
return EMAC_TX_INVALID_PACKET;
}
// If no free TxTd, buffer can't be sent, schedule the wakeup callback
if( CIRC_SPACE(txTd.head, txTd.tail, TX_BUFFERS) == 0) {
return EMAC_TX_BUFFER_BUSY;
}
// Pointers to the current TxTd
pTxTd = txTd.td + txTd.head;
pTxCb = txTd.txCb + txTd.head;
// Sanity check
ASSERT((pTxTd->status & EMAC_TX_USED_BIT) != 0,
"-F- Buffer is still under EMAC control\n\r");
// Setup/Copy data to transmition buffer
if (pBuffer && size) {
// Driver manage the ring buffer
memcpy((void *)pTxTd->addr, pBuffer, size);
}
// Tx Callback
*pTxCb = fEMAC_TxCallback;
// Update TD status
// The buffer size defined is length of ethernet frame
// so it's always the last buffer of the frame.
if (txTd.head == TX_BUFFERS-1) {
pTxTd->status =
(size & EMAC_LENGTH_FRAME) | EMAC_TX_LAST_BUFFER_BIT | EMAC_TX_WRAP_BIT;
}
else {
pTxTd->status = (size & EMAC_LENGTH_FRAME) | EMAC_TX_LAST_BUFFER_BIT;
}
CIRC_INC(txTd.head, TX_BUFFERS)
// Tx packets count
EmacStatistics.tx_packets++;
// Now start to transmit if it is not already done
AT91C_BASE_EMAC->EMAC_NCR |= AT91C_EMAC_TSTART;
return EMAC_TX_OK;
}
//-----------------------------------------------------------------------------
/// Receive a packet with EMAC
/// If not enough buffer for the packet, the remaining data is lost but right
/// frame length is returned.
/// \param pFrame Buffer to store the frame
/// \param frameSize Size of the frame
/// \param pRcvSize Received size
/// \return OK, no data, or frame too small
//-----------------------------------------------------------------------------
unsigned char EMAC_Poll(unsigned char *pFrame,
unsigned int frameSize,
unsigned int *pRcvSize)
{
unsigned short bufferLength;
unsigned int tmpFrameSize=0;
unsigned char *pTmpFrame=0;
unsigned int tmpIdx = rxTd.idx;
volatile EmacRxTDescriptor *pRxTd = rxTd.td + rxTd.idx;
ASSERT(pFrame, "F: EMAC_Poll\n\r");
char isFrame = 0;
// Set the default return value
*pRcvSize = 0;
// Process received RxTd
while ((pRxTd->addr & EMAC_RX_OWNERSHIP_BIT) == EMAC_RX_OWNERSHIP_BIT) {
// A start of frame has been received, discard previous fragments
if ((pRxTd->status & EMAC_RX_SOF_BIT) == EMAC_RX_SOF_BIT) {
// Skip previous fragment
while (tmpIdx != rxTd.idx) {
pRxTd = rxTd.td + rxTd.idx;
pRxTd->addr &= ~(EMAC_RX_OWNERSHIP_BIT);
CIRC_INC(rxTd.idx, RX_BUFFERS);
}
// Reset the temporary frame pointer
pTmpFrame = pFrame;
tmpFrameSize = 0;
// Start to gather buffers in a frame
isFrame = 1;
}
// Increment the pointer
CIRC_INC(tmpIdx, RX_BUFFERS);
// Copy data in the frame buffer
if (isFrame) {
if (tmpIdx == rxTd.idx) {
trace_LOG(trace_INFO,
"I: no EOF (Invalid of buffers too small)\n\r");
do {
pRxTd = rxTd.td + rxTd.idx;
pRxTd->addr &= ~(EMAC_RX_OWNERSHIP_BIT);
CIRC_INC(rxTd.idx, RX_BUFFERS);
} while(tmpIdx != rxTd.idx);
return EMAC_RX_NO_DATA;
}
// Copy the buffer into the application frame
bufferLength = EMAC_RX_UNITSIZE;
if ((tmpFrameSize + bufferLength) > frameSize) {
bufferLength = frameSize - tmpFrameSize;
}
memcpy(pTmpFrame, (void*)(pRxTd->addr & EMAC_ADDRESS_MASK), bufferLength);
pTmpFrame += bufferLength;
tmpFrameSize += bufferLength;
// An end of frame has been received, return the data
if ((pRxTd->status & EMAC_RX_EOF_BIT) == EMAC_RX_EOF_BIT) {
// Frame size from the EMAC
*pRcvSize = (pRxTd->status & EMAC_LENGTH_FRAME);
// Application frame buffer is too small all data have not been copied
if (tmpFrameSize < *pRcvSize) {
printf("size req %u size allocated %u\n\r", *pRcvSize, frameSize);
return EMAC_RX_FRAME_SIZE_TOO_SMALL;
}
trace_LOG(trace_INFO, "packet %d-%u (%u)\n\r", rxTd.idx, tmpIdx, *pRcvSize);
// All data have been copied in the application frame buffer => release TD
while (rxTd.idx != tmpIdx) {
pRxTd = rxTd.td + rxTd.idx;
pRxTd->addr &= ~(EMAC_RX_OWNERSHIP_BIT);
CIRC_INC(rxTd.idx, RX_BUFFERS);
}
EmacStatistics.rx_packets++;
return EMAC_RX_OK;
}
}
// SOF has not been detected, skip the fragment
else {
pRxTd->addr &= ~(EMAC_RX_OWNERSHIP_BIT);
rxTd.idx = tmpIdx;
}
// Process the next buffer
pRxTd = rxTd.td + tmpIdx;
}
//trace_LOG(trace_DEBUG, "E");
return EMAC_RX_NO_DATA;
}
//-----------------------------------------------------------------------------
/// Registers pRxCb callback. Callback will be invoked after the next received
/// frame.
/// When EMAC_Poll() returns EMAC_RX_NO_DATA the application task call EMAC_Set_RxCb()
/// to register pRxCb() callback and enters suspend state. The callback is in charge
/// to resume the task once a new frame has been received. The next time EMAC_Poll()
/// is called, it will be successfull.
/// \param pRxCb Pointer to callback function
//-----------------------------------------------------------------------------
void EMAC_Set_RxCb(EMAC_RxCallback pRxCb)
{
rxTd.rxCb = pRxCb;
AT91C_BASE_EMAC->EMAC_IER = AT91C_EMAC_RCOMP;
}
//-----------------------------------------------------------------------------
/// Remove the RX callback function.
/// This function is usually invoked from the RX callback itself. Once the callback
/// has resumed the application task, there is no need to invoke the callback again.
//-----------------------------------------------------------------------------
void EMAC_Clear_RxCb(void)
{
AT91C_BASE_EMAC->EMAC_IDR = AT91C_EMAC_RCOMP;
rxTd.rxCb = (EMAC_RxCallback) 0;
}
//-----------------------------------------------------------------------------
/// Registers TX wakeup callback callback. Callback will be invoked once several
/// transfer descriptors are available.
/// When EMAC_Send() returns EMAC_TX_BUFFER_BUSY (all TD busy) the application
/// task calls EMAC_Set_TxWakeUpCb() to register pTxWakeUpCb() callback and
/// enters suspend state. The callback is in charge to resume the task once
/// several TD have been released. The next time EMAC_Send() will be called, it
/// shall be successfull.
/// \param pTxWakeUpCb Pointer to callback function
/// \param threshold Minimum number of available transfer descriptors before pTxWakeUpCb() is invoked
/// \return 0= success, 1 = threshold exceeds nuber of transfer descriptors
//-----------------------------------------------------------------------------
char EMAC_Set_TxWakeUpCb(EMAC_WakeupCallback pTxWakeUpCb, unsigned short threshold)
{
if (threshold <= TX_BUFFERS) {
txTd.wakeupCb = pTxWakeUpCb;
txTd.wakeupThreshold = threshold;
return 0;
}
return 1;
}
//-----------------------------------------------------------------------------
/// Remove the TX wakeup callback function.
/// This function is usually invoked from the TX wakeup callback itself. Once the callback
/// has resumed the application task, there is no need to invoke the callback again.
//-----------------------------------------------------------------------------
void EMAC_Clear_TxWakeUpCb(void)
{
txTd.wakeupCb = (EMAC_WakeupCallback) 0;
}