#include "SIF.h" #include "common.h" #define DATA_REV_PIN gpio_get(SIF_REV_PIN) #ifdef _SIF_DEBUG_ char log_str[128] = { 0 }; #endif typedef enum { INITIAL_STATE = 0, // 初始状态,等待接收同步信号 SYNC_L_STATE = 1, // 接收同步低电平信号状态 SYNC_H_STATE = 2, // 接收同步高电平信号状态 DATA_REV_STATE = 3, // 读取数据码电平状态 END_SIGNAL_STATE = 4, // 接收结束电平信号状态 RESTART_REV_STATE = 5 // 接收过程出错重新接收状态 } REV_STATE_e; // 接收数据状态枚举 unsigned char receive_state = 0; //接收数据状态 unsigned char receive_bit_num = 0; //接收的bit位个数 unsigned char receive_data_num = 0; //接收的数据个数 unsigned char sif_receive_data_buf[REV_DATA_NUM] = { 0 }; //接收数据缓存数组如果一帧数据有多个数据打开注释 unsigned char sif_receive_data[REV_DATA_NUM] = { 0 }; unsigned int H_L_Level_time_cnt = 0; //高低电平时间计数 unsigned int Tosc = TOSC; //波形时基单元,一般带波特率自适应的,不会说明高低电平的时间,会用一个Tosc时基描述 //如上面的波形图,要求 32Tosc = 0.5ms = 500us //所以:一个Tosc = 500us/32 ≈ 15us,而定时器0单次定时时间为5us,所以实际一个Tosc = 15us/5us = 3 次 //可以理解为 5us 是人为设置的一个定时器单次定时时间,再这个定时时间的基础上又产生了一个实际时基Tosc,用在波形上,波形基于这个Tosc时基单元 //可以动态的调整高低电平的时间,只要Tosc改变,992Tosc和32Tosc以及64Tosc对应的时间也会随之改变;然后我们反过来思考,再不知道波特率的情况下, //去读取同步信号高电平的时间,将读到的时间计数H_L_Level_time_cnt * 15us是高电平的真实维持时间 = 32 * Tosc * 5us = SHORT_TIME_NUM * Tosc * 5us //Tosc = H_L_Level_time_cnt / SHORT_TIME_NUM //在本案例中,一帧数据 = 992Tosc+32Tosc+(64+32)*8*12Tosc = 10240*Tosc 次 //1秒钟 = 1000000us,单次定时 5us,则1s / 5us = 200000 次 //则1秒钟可以接收 200000 / (10240 * Tosc) = 200000/10240/Tosc = 19/Tosc 帧数据 uint8_t start_H_L_Level_timming_flag = 0; //开始高低电平计时标记 uint8_t has_read_bit = 0; //1-已经读取一个bit位 uint8_t read_success = 0; //一帧数据是否读取成功,0-不成功,1-成功 uint8_t is_end_bit = 0; // 结束帧判定 0-未结束,1-结束标志 void GPIO_SIF_Init(void) { gpio_init(SIF_REV_PIN); gpio_set_dir(SIF_REV_PIN, GPIO_OUT); } void TIMER_SIF_IRQHandler(void) { if (start_H_L_Level_timming_flag == 1) { H_L_Level_time_cnt++; //高低电平维持时间计数变量 } Receive_SIF_Data_Handle(); //接收数据处理,波特率自适应 } void Receive_SIF_Data_Handle(void) { switch (receive_state) //检测当前接收数据状态 { case INITIAL_STATE: //初始状态,未接收到同步信息,进行同步判断 if (DATA_REV_PIN == LOW) //判断接收引脚的电平状态,当读到低电平时,开始计时 { receive_bit_num = REV_BIT_NUM; //重置bit位计数器 receive_data_num = 0; //重置接收数据个数 H_L_Level_time_cnt = 0; //高低电平计时变量清0 read_success = 0; //结束位置低电平判定清零 start_H_L_Level_timming_flag = 1; //开始高低电平计时 is_end_bit = 0; receive_state = SYNC_L_STATE; //进入读取同步低电平信号状态 memset(sif_receive_data_buf, 0, 16); } break; case SYNC_L_STATE: //在读取同步低电平信号期间 if (H_L_Level_time_cnt > SYNC_TIME_NUM * Tosc) //如果低电平时间 > SYNC_TIME_NUM*Tosc=992*3*5us { //同步状态空闲时间大于15ms if (DATA_REV_PIN == HIGH) //判断接收引脚的电平状态,当读到高电平时 { H_L_Level_time_cnt = 0; //高低电平计时变量清0 receive_state = SYNC_H_STATE; //进入读取同步信号高电平状态 } } else { if (DATA_REV_PIN == HIGH) //同步信号低电平检测期间读到高电平重新计时 { receive_state = RESTART_REV_STATE; //进入重新接收状态 } } break; case SYNC_H_STATE: //在读取同步高电平信号期间 if (H_L_Level_time_cnt >= LOGIC_CYCLE_NUM * Tosc) //如果高电平时间超过了(32+64=96)个Tosc,则认为超时 { receive_state = RESTART_REV_STATE; //进入重新接收状态 } else { if (DATA_REV_PIN == LOW) //同步信号高电平检测期间读到低电平 { //在同步信号高电平检测期间读到低电平可能有如下状态: //1、高电平时间短,不满32Tosc //2、高电平时间正好=32Tosc //3、高电平时间长,超过32Tosc //不管何种状态,都要 调整 Tosc 的值达到波特率自适应 //H_L_Level_time_cnt * 5us 要求是 SHORT_TIME_NUM * Tosc * 5us, //即 H_L_Level_time_cnt = SHORT_TIME_NUM * Tosc Tosc = H_L_Level_time_cnt / SHORT_TIME_NUM; //调整 Tosc 的值 H_L_Level_time_cnt = 0; //高低电平计时变量清0 receive_state = DATA_REV_STATE; //进入读取数据码低电平状态 } } break; case DATA_REV_STATE: //在读取数据码电平期间 //逻辑"0"为 64Tosc低电平 + 32Tosc高电平 //逻辑"1"为 32Tosc低电平 + 64Tosc高电平 //不管是逻辑"0"还是逻辑"1",周期一样,都是32Tosc + 64Tosc = 96Tosc //可以取中间时间点进行判断,96Tosc / 2 = 48Tosc,当计数>=48Tosc时读取引脚电平 //如果还没有读取一个bit位,且时间计数已经>=48Tosc if ((has_read_bit == 0) && (H_L_Level_time_cnt >= (HALF_LOGIC_CYCLE * Tosc))) { sif_receive_data_buf[receive_data_num] |= DATA_REV_PIN; has_read_bit = 1; } //如果已经读取一个bit位,且时间计数已经>=96Tosc,说明一个逻辑周期过去了 if ((has_read_bit == 1) && (H_L_Level_time_cnt >= (LOGIC_CYCLE_NUM * Tosc))) { H_L_Level_time_cnt = 0; //高低电平计时变量清0 has_read_bit = 0; //清0,读取下一个bit位 receive_bit_num--; //接收的bit数-- if (receive_bit_num == 0) //如果一个字节8个bit位接收完成 { receive_data_num++; //接收的数据个数++ receive_bit_num = REV_BIT_NUM; //重置接收bit位个数 if (receive_data_num >= REV_DATA_NUM) //如果数据采集完毕 超出了最大值 { start_H_L_Level_timming_flag = 0; //停止高低电平计时 H_L_Level_time_cnt = 0; //定时器计数值清0 receive_state = INITIAL_STATE; //接收状态清0 } } else //如果一个字节8个bit位还没有接收完成 { //将接收数据缓存左移一位,数据从高bit位开始接收 sif_receive_data_buf[receive_data_num] = sif_receive_data_buf[receive_data_num] << 1; } } // 记录 结束标志 if (H_L_Level_time_cnt == (END_SIGNAL_FLAG_NUM * Tosc) && (DATA_REV_PIN == LOW)) { is_end_bit = 1; has_read_bit = 0; read_success = 1; //一帧数据读取成功 #ifdef _SIF_DEBUG_ sprintf(log_str, "rn:%d,%s.", receive_data_num, sif_receive_data_buf); #endif Check_Sum_Handle(); start_H_L_Level_timming_flag = 0; //停止高低电平计时 H_L_Level_time_cnt = 0; //定时器计数值清0 receive_state = INITIAL_STATE; //接收状态清0 } break; case END_SIGNAL_STATE: //在接收结束信号低电平期间 if (DATA_REV_PIN == LOW) { if (H_L_Level_time_cnt >= END_SIGNAL_TIME_NUM * Tosc) //如果读到低电平时间>=5ms { read_success = 1; //一帧数据读取成功 Check_Sum_Handle(); start_H_L_Level_timming_flag = 0; //停止高低电平计时 H_L_Level_time_cnt = 0; //定时器计数值清0 receive_state = INITIAL_STATE; //接收状态清0 } } else //结束信号低电平检测期间一直为低 { //if (H_L_Level_time_cnt >= SYNC_L_TIME_NUM) //如果读到低电平时间>=10ms,认为超时 { //一帧数据发送完成后需要间隔50ms才发送第二帧数据,期间肯定会被拉高 receive_state = RESTART_REV_STATE; //进入重新接收状态 } } break; case RESTART_REV_STATE: //重新接收数据状态 start_H_L_Level_timming_flag = 0; //停止高低电平计时 H_L_Level_time_cnt = 0; //定时器计数值清0 is_end_bit = 0; receive_state = INITIAL_STATE; //接收状态清0 break; } } unsigned char *pGetSIFData(void) //获取SIF数据 { return sif_receive_data; } #ifdef _SIF_DEBUG_ char *pGetLogStr(void) //获取SIF数据 { return log_str; } #endif void Check_Sum_Handle() { if (read_success == 1) //如果成功读取一帧数据 { //一帧数据接收成功后先根据协议要求进行校验和,验证数据的正确性 //如果数据正确,根据接收的数据进行分析获取需要的内容 //if (check_OK) { memset(sif_receive_data, 0, REV_DATA_NUM); memcpy(sif_receive_data, sif_receive_data_buf, REV_DATA_NUM); memset(sif_receive_data_buf, 0, REV_DATA_NUM); } read_success = 0; //读取一帧数据清0 } } void SIF(void *p) { (void)p; GPIO_SIF_Init(); while (1) { char *SIF_DATA = (char *)pGetSIFData(); printf("%s", SIF_DATA); vTaskDelay(pdMS_TO_TICKS(3000)); // 非阻塞延时 } return ; }