EBIKE-FreeRTOS/Common/Minimal/AbortDelay.c
2024-04-14 18:38:39 +08:00

800 lines
29 KiB
C

/*
* FreeRTOS V202212.00
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
/*
* This file contains some test scenarios that ensure tasks respond correctly
* to xTaskAbortDelay() calls. It also ensures tasks return the correct state
* of eBlocked when blocked indefinitely in both the case where a task is
* blocked on an object and when a task is blocked on a notification.
*/
/* Standard includes. */
#include "limits.h"
/* Kernel includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "semphr.h"
#include "event_groups.h"
#include "stream_buffer.h"
/* Demo includes. */
#include "AbortDelay.h"
/* This file can only be used if the functionality it tests is included in the
* build. Remove the whole file if this is not the case. */
#if ( INCLUDE_xTaskAbortDelay == 1 )
#if ( INCLUDE_xTaskGetHandle != 1 )
#error This test file uses the xTaskGetHandle() API function so INCLUDE_xTaskGetHandle must be set to 1 in FreeRTOSConfig.h.
#endif
/* Task priorities. Allow these to be overridden. */
#ifndef abtCONTROLLING_PRIORITY
#define abtCONTROLLING_PRIORITY ( configMAX_PRIORITIES - 3 )
#endif
#ifndef abtBLOCKING_PRIORITY
#define abtBLOCKING_PRIORITY ( configMAX_PRIORITIES - 2 )
#endif
/* The tests that are performed. */
#define abtNOTIFY_WAIT_ABORTS 0
#define abtNOTIFY_TAKE_ABORTS 1
#define abtDELAY_ABORTS 2
#define abtDELAY_UNTIL_ABORTS 3
#define abtSEMAPHORE_TAKE_ABORTS 4
#define abtEVENT_GROUP_ABORTS 5
#define abtQUEUE_SEND_ABORTS 6
#define abtSTREAM_BUFFER_RECEIVE 7
#define abtMAX_TESTS 8
/*-----------------------------------------------------------*/
/*
* The two test tasks. The controlling task specifies which test to executed.
* More information is provided in the comments within the tasks.
*/
static void prvControllingTask( void * pvParameters );
static void prvBlockingTask( void * pvParameters );
/*
* Test functions called by the blocking task. Each function follows the same
* pattern, but the way the task blocks is different in each case.
*
* In each function three blocking calls are made. The first and third
* blocking call is expected to time out, while the middle blocking call is
* expected to be aborted by the controlling task half way through the block
* time.
*/
static void prvTestAbortingTaskNotifyWait( void );
static void prvTestAbortingTaskNotifyTake( void );
static void prvTestAbortingTaskDelay( void );
static void prvTestAbortingTaskDelayUntil( void );
static void prvTestAbortingSemaphoreTake( void );
static void prvTestAbortingEventGroupWait( void );
static void prvTestAbortingQueueSend( void );
static void prvTestAbortingStreamBufferReceive( void );
/*
* Performs a few tests to cover code paths not otherwise covered by the continuous
* tests.
*/
static void prvPerformSingleTaskTests( void );
/*
* Checks the amount of time a task spent in the Blocked state is within the
* expected bounds.
*/
static void prvCheckExpectedTimeIsWithinAnAcceptableMargin( TickType_t xStartTime,
TickType_t xExpectedBlockTime );
/*-----------------------------------------------------------*/
/* Used to ensure that tasks are still executing without error. */
static volatile BaseType_t xControllingCycles = 0, xBlockingCycles = 0;
static volatile BaseType_t xErrorOccurred = pdFALSE;
/* Each task needs to know the other tasks handle so they can send signals to
* each other. The handle is obtained from the task's name. */
static const char * pcControllingTaskName = "AbtCtrl", * pcBlockingTaskName = "AbtBlk";
/* The maximum amount of time a task will block for. */
const TickType_t xMaxBlockTime = pdMS_TO_TICKS( 100 );
const TickType_t xHalfMaxBlockTime = pdMS_TO_TICKS( 50 );
/* The actual block time is dependent on the priority of other tasks in the
* system so the actual block time might be greater than that expected, but it
* should be within an acceptable upper bound. */
const TickType_t xAllowableMargin = pdMS_TO_TICKS( 7 );
/*-----------------------------------------------------------*/
void vCreateAbortDelayTasks( void )
{
/* Create the two test tasks described above. */
xTaskCreate( prvControllingTask, pcControllingTaskName, configMINIMAL_STACK_SIZE, NULL, abtCONTROLLING_PRIORITY, NULL );
xTaskCreate( prvBlockingTask, pcBlockingTaskName, configMINIMAL_STACK_SIZE, NULL, abtBLOCKING_PRIORITY, NULL );
}
/*-----------------------------------------------------------*/
static void prvControllingTask( void * pvParameters )
{
TaskHandle_t xBlockingTask;
uint32_t ulTestToPerform = abtNOTIFY_WAIT_ABORTS;
TickType_t xTimeAtStart;
const TickType_t xStartMargin = 2UL;
/* Just to remove compiler warnings. */
( void ) pvParameters;
xBlockingTask = xTaskGetHandle( pcBlockingTaskName );
configASSERT( xBlockingTask );
for( ; ; )
{
/* Tell the secondary task to perform the next test. */
xTimeAtStart = xTaskGetTickCount();
xTaskNotify( xBlockingTask, ulTestToPerform, eSetValueWithOverwrite );
/* The secondary task has a higher priority, so will now be in the
* Blocked state to wait for a maximum of xMaxBlockTime. It expects that
* period to complete with a timeout. It will then block for
* xMaxBlockTimeAgain, but this time it expects to the block time to abort
* half way through. Block until it is time to send the abort to the
* secondary task. xStartMargin is used because this task takes timing
* from the beginning of the test, whereas the blocking task takes timing
* from the entry into the Blocked state - and as the tasks run at
* different priorities, there may be some discrepancy. Also, temporarily
* raise the priority of the controlling task to that of the blocking
* task to minimise discrepancies. */
vTaskPrioritySet( NULL, abtBLOCKING_PRIORITY );
vTaskDelay( xMaxBlockTime + xHalfMaxBlockTime + xStartMargin );
if( xTaskAbortDelay( xBlockingTask ) != pdPASS )
{
xErrorOccurred = __LINE__;
}
/* Reset the priority to the normal controlling priority. */
vTaskPrioritySet( NULL, abtCONTROLLING_PRIORITY );
/* Now wait to be notified that the secondary task has completed its
* test. */
ulTaskNotifyTake( pdTRUE, portMAX_DELAY );
/* Did the entire test run for the expected time, which is two full
* block times plus the half block time caused by calling
* xTaskAbortDelay()? */
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, ( xMaxBlockTime + xMaxBlockTime + xHalfMaxBlockTime ) );
/* Move onto the next test. */
ulTestToPerform++;
if( ulTestToPerform >= abtMAX_TESTS )
{
ulTestToPerform = 0;
}
/* To indicate this task is still executing. */
xControllingCycles++;
}
}
/*-----------------------------------------------------------*/
static void prvBlockingTask( void * pvParameters )
{
TaskHandle_t xControllingTask;
uint32_t ulNotificationValue;
const uint32_t ulMax = 0xffffffffUL;
/* Just to remove compiler warnings. */
( void ) pvParameters;
/* Start by performing a few tests to cover code not exercised in the loops
* below. */
prvPerformSingleTaskTests();
xControllingTask = xTaskGetHandle( pcControllingTaskName );
configASSERT( xControllingTask );
for( ; ; )
{
/* Wait to be notified of the test that is to be performed next. */
xTaskNotifyWait( 0, ulMax, &ulNotificationValue, portMAX_DELAY );
switch( ulNotificationValue )
{
case abtNOTIFY_WAIT_ABORTS:
prvTestAbortingTaskNotifyWait();
break;
case abtNOTIFY_TAKE_ABORTS:
prvTestAbortingTaskNotifyTake();
break;
case abtDELAY_ABORTS:
prvTestAbortingTaskDelay();
break;
case abtDELAY_UNTIL_ABORTS:
prvTestAbortingTaskDelayUntil();
break;
case abtSEMAPHORE_TAKE_ABORTS:
prvTestAbortingSemaphoreTake();
break;
case abtEVENT_GROUP_ABORTS:
prvTestAbortingEventGroupWait();
break;
case abtQUEUE_SEND_ABORTS:
prvTestAbortingQueueSend();
break;
case abtSTREAM_BUFFER_RECEIVE:
prvTestAbortingStreamBufferReceive();
break;
default:
/* Should not get here. */
break;
}
/* Let the primary task know the test is complete. */
xTaskNotifyGive( xControllingTask );
/* To indicate this task is still executing. */
xBlockingCycles++;
}
}
/*-----------------------------------------------------------*/
static void prvPerformSingleTaskTests( void )
{
TaskHandle_t xThisTask;
BaseType_t xReturned;
/* Try unblocking this task using both the task and ISR versions of the API -
* both should return false as this task is not blocked. */
xThisTask = xTaskGetCurrentTaskHandle();
xReturned = xTaskAbortDelay( xThisTask );
if( xReturned != pdFALSE )
{
xErrorOccurred = __LINE__;
}
}
/*-----------------------------------------------------------*/
static void prvTestAbortingTaskDelayUntil( void )
{
TickType_t xTimeAtStart, xLastBlockTime;
BaseType_t xReturned;
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* Take a copy of the time as it is updated in the call to
* xTaskDelayUntil() but its original value is needed to determine the actual
* time spend in the Blocked state. */
xLastBlockTime = xTimeAtStart;
/* This first delay should just time out. */
xReturned = xTaskDelayUntil( &xLastBlockTime, xMaxBlockTime );
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xMaxBlockTime );
configASSERT( xReturned == pdTRUE );
/* Remove compiler warning about value being set but not used in the case
* configASSERT() is not defined. */
( void ) xReturned;
/* This second delay should be aborted by the primary task half way
* through. Again take a copy of the time as it is updated in the call to
* vTaskDelayUntil() buts its original value is needed to determine the amount
* of time actually spent in the Blocked state. This uses vTaskDelayUntil()
* in place of xTaskDelayUntil() for test coverage. */
xTimeAtStart = xTaskGetTickCount();
xLastBlockTime = xTimeAtStart;
vTaskDelayUntil( &xLastBlockTime, xMaxBlockTime );
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xHalfMaxBlockTime );
/* As with the other tests, the third block period should not time out. */
xTimeAtStart = xTaskGetTickCount();
xLastBlockTime = xTimeAtStart;
xReturned = xTaskDelayUntil( &xLastBlockTime, xMaxBlockTime );
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xMaxBlockTime );
configASSERT( xReturned == pdTRUE );
/* Remove compiler warning about value being set but not used in the case
* configASSERT() is not defined. */
( void ) xReturned;
}
/*-----------------------------------------------------------*/
static void prvTestAbortingTaskDelay( void )
{
TickType_t xTimeAtStart;
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This first delay should just time out. */
vTaskDelay( xMaxBlockTime );
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xMaxBlockTime );
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This second delay should be aborted by the primary task half way
* through. */
vTaskDelay( xMaxBlockTime );
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xHalfMaxBlockTime );
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This third delay should just time out again. */
vTaskDelay( xMaxBlockTime );
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xMaxBlockTime );
}
/*-----------------------------------------------------------*/
static void prvTestAbortingTaskNotifyTake( void )
{
TickType_t xTimeAtStart;
uint32_t ulReturn;
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This first delay should just time out. */
ulReturn = ulTaskNotifyTake( pdFALSE, xMaxBlockTime );
if( ulReturn != 0 )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xMaxBlockTime );
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This second delay should be aborted by the primary task half way
* through. */
ulReturn = ulTaskNotifyTake( pdFALSE, xMaxBlockTime );
if( ulReturn != 0 )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xHalfMaxBlockTime );
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This third delay should just time out again. */
ulReturn = ulTaskNotifyTake( pdFALSE, xMaxBlockTime );
if( ulReturn != 0 )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xMaxBlockTime );
}
/*-----------------------------------------------------------*/
static void prvTestAbortingEventGroupWait( void )
{
TickType_t xTimeAtStart;
EventGroupHandle_t xEventGroup;
EventBits_t xBitsToWaitFor = ( EventBits_t ) 0x01, xReturn;
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
{
static StaticEventGroup_t xEventGroupBuffer;
/* Create the event group. Statically allocated memory is used so the
* creation cannot fail. */
xEventGroup = xEventGroupCreateStatic( &xEventGroupBuffer );
}
#else
{
xEventGroup = xEventGroupCreate();
configASSERT( xEventGroup );
}
#endif /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This first delay should just time out. */
xReturn = xEventGroupWaitBits( xEventGroup, xBitsToWaitFor, pdTRUE, pdTRUE, xMaxBlockTime );
if( xReturn != 0x00 )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xMaxBlockTime );
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This second delay should be aborted by the primary task half way
* through. */
xReturn = xEventGroupWaitBits( xEventGroup, xBitsToWaitFor, pdTRUE, pdTRUE, xMaxBlockTime );
if( xReturn != 0x00 )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xHalfMaxBlockTime );
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This third delay should just time out again. */
xReturn = xEventGroupWaitBits( xEventGroup, xBitsToWaitFor, pdTRUE, pdTRUE, xMaxBlockTime );
if( xReturn != 0x00 )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xMaxBlockTime );
/* Not really necessary in this case, but for completeness. */
vEventGroupDelete( xEventGroup );
}
/*-----------------------------------------------------------*/
static void prvTestAbortingStreamBufferReceive( void )
{
TickType_t xTimeAtStart;
StreamBufferHandle_t xStreamBuffer;
size_t xReturn;
const size_t xTriggerLevelBytes = ( size_t ) 1;
uint8_t uxRxData;
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
{
/* Defines the memory that will actually hold the streams within the
* stream buffer. */
static uint8_t ucStorageBuffer[ sizeof( configMESSAGE_BUFFER_LENGTH_TYPE ) + 1 ];
/* The variable used to hold the stream buffer structure. */
StaticStreamBuffer_t xStreamBufferStruct;
xStreamBuffer = xStreamBufferCreateStatic( sizeof( ucStorageBuffer ),
xTriggerLevelBytes,
ucStorageBuffer,
&xStreamBufferStruct );
}
#else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
{
xStreamBuffer = xStreamBufferCreate( sizeof( uint8_t ), xTriggerLevelBytes );
configASSERT( xStreamBuffer );
}
#endif /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This first delay should just time out. */
xReturn = xStreamBufferReceive( xStreamBuffer, &uxRxData, sizeof( uxRxData ), xMaxBlockTime );
if( xReturn != 0x00 )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xMaxBlockTime );
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This second delay should be aborted by the primary task half way
* through xMaxBlockTime. */
xReturn = xStreamBufferReceive( xStreamBuffer, &uxRxData, sizeof( uxRxData ), xMaxBlockTime );
if( xReturn != 0x00 )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xHalfMaxBlockTime );
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This third delay should just time out again. */
xReturn = xStreamBufferReceive( xStreamBuffer, &uxRxData, sizeof( uxRxData ), xMaxBlockTime );
if( xReturn != 0x00 )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xMaxBlockTime );
/* Not really necessary in this case, but for completeness. */
vStreamBufferDelete( xStreamBuffer );
}
/*-----------------------------------------------------------*/
static void prvTestAbortingQueueSend( void )
{
TickType_t xTimeAtStart;
BaseType_t xReturn;
const UBaseType_t xQueueLength = ( UBaseType_t ) 1;
QueueHandle_t xQueue;
uint8_t ucItemToQueue;
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
{
static StaticQueue_t xQueueBuffer;
static uint8_t ucQueueStorage[ sizeof( uint8_t ) ];
/* Create the queue. Statically allocated memory is used so the
* creation cannot fail. */
xQueue = xQueueCreateStatic( xQueueLength, sizeof( uint8_t ), ucQueueStorage, &xQueueBuffer );
}
#else
{
xQueue = xQueueCreate( xQueueLength, sizeof( uint8_t ) );
configASSERT( xQueue );
}
#endif /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
/* This function tests aborting when in the blocked state waiting to send,
* so the queue must be full. There is only one space in the queue. */
xReturn = xQueueSend( xQueue, &ucItemToQueue, xMaxBlockTime );
if( xReturn != pdPASS )
{
xErrorOccurred = __LINE__;
}
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This first delay should just time out. */
xReturn = xQueueSend( xQueue, &ucItemToQueue, xMaxBlockTime );
if( xReturn != pdFALSE )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xMaxBlockTime );
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This second delay should be aborted by the primary task half way
* through. */
xReturn = xQueueSend( xQueue, &ucItemToQueue, xMaxBlockTime );
if( xReturn != pdFALSE )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xHalfMaxBlockTime );
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This third delay should just time out again. */
xReturn = xQueueSend( xQueue, &ucItemToQueue, xMaxBlockTime );
if( xReturn != pdFALSE )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xMaxBlockTime );
/* Not really necessary in this case, but for completeness. */
vQueueDelete( xQueue );
}
/*-----------------------------------------------------------*/
static void prvTestAbortingSemaphoreTake( void )
{
TickType_t xTimeAtStart;
BaseType_t xReturn;
SemaphoreHandle_t xSemaphore;
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
{
static StaticSemaphore_t xSemaphoreBuffer;
/* Create the semaphore. Statically allocated memory is used so the
* creation cannot fail. */
xSemaphore = xSemaphoreCreateBinaryStatic( &xSemaphoreBuffer );
}
#else
{
xSemaphore = xSemaphoreCreateBinary();
}
#endif
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This first delay should just time out. */
xReturn = xSemaphoreTake( xSemaphore, xMaxBlockTime );
if( xReturn != pdFALSE )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xMaxBlockTime );
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This second delay should be aborted by the primary task half way
* through xMaxBlockTime. */
xReturn = xSemaphoreTake( xSemaphore, portMAX_DELAY );
if( xReturn != pdFALSE )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xHalfMaxBlockTime );
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This third delay should just time out again. */
xReturn = xSemaphoreTake( xSemaphore, xMaxBlockTime );
if( xReturn != pdFALSE )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xMaxBlockTime );
/* Not really necessary in this case, but for completeness. */
vSemaphoreDelete( xSemaphore );
}
/*-----------------------------------------------------------*/
static void prvTestAbortingTaskNotifyWait( void )
{
TickType_t xTimeAtStart;
BaseType_t xReturn;
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This first delay should just time out. */
xReturn = xTaskNotifyWait( 0, 0, NULL, xMaxBlockTime );
if( xReturn != pdFALSE )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xMaxBlockTime );
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This second delay should be aborted by the primary task half way
* through xMaxBlockTime. */
xReturn = xTaskNotifyWait( 0, 0, NULL, portMAX_DELAY );
if( xReturn != pdFALSE )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xHalfMaxBlockTime );
/* Note the time before the delay so the length of the delay is known. */
xTimeAtStart = xTaskGetTickCount();
/* This third delay should just time out again. */
xReturn = xTaskNotifyWait( 0, 0, NULL, xMaxBlockTime );
if( xReturn != pdFALSE )
{
xErrorOccurred = __LINE__;
}
prvCheckExpectedTimeIsWithinAnAcceptableMargin( xTimeAtStart, xMaxBlockTime );
}
/*-----------------------------------------------------------*/
static void prvCheckExpectedTimeIsWithinAnAcceptableMargin( TickType_t xStartTime,
TickType_t xExpectedBlockTime )
{
TickType_t xTimeNow, xActualBlockTime;
xTimeNow = xTaskGetTickCount();
xActualBlockTime = xTimeNow - xStartTime;
/* The actual block time should not be less than the expected block time. */
if( xActualBlockTime < xExpectedBlockTime )
{
xErrorOccurred = __LINE__;
}
/* The actual block time can be greater than the expected block time, as it
* depends on the priority of the other tasks, but it should be within an
* acceptable margin. */
if( xActualBlockTime > ( xExpectedBlockTime + xAllowableMargin ) )
{
xErrorOccurred = __LINE__;
}
}
/*-----------------------------------------------------------*/
BaseType_t xAreAbortDelayTestTasksStillRunning( void )
{
static BaseType_t xLastControllingCycleCount = 0, xLastBlockingCycleCount = 0;
BaseType_t xReturn = pdPASS;
/* Have both tasks performed at least one cycle since this function was
* last called? */
if( xControllingCycles == xLastControllingCycleCount )
{
xReturn = pdFAIL;
}
if( xBlockingCycles == xLastBlockingCycleCount )
{
xReturn = pdFAIL;
}
if( xErrorOccurred != pdFALSE )
{
xReturn = pdFAIL;
}
xLastBlockingCycleCount = xBlockingCycles;
xLastControllingCycleCount = xControllingCycles;
return xReturn;
}
#endif /* INCLUDE_xTaskAbortDelay == 1 */