EBIKE-FreeRTOS/Common/Minimal/flop.c
2024-04-14 18:38:39 +08:00

347 lines
12 KiB
C

/*
* FreeRTOS V202212.00
* Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
/*
* Creates eight tasks, each of which loops continuously performing a floating
* point calculation.
*
* All the tasks run at the idle priority and never block or yield. This causes
* all eight tasks to time slice with the idle task. Running at the idle
* priority means that these tasks will get pre-empted any time another task is
* ready to run or a time slice occurs. More often than not the pre-emption
* will occur mid calculation, creating a good test of the schedulers context
* switch mechanism - a calculation producing an unexpected result could be a
* symptom of a corruption in the context of a task.
*/
/* Standard includes. */
#include <stdlib.h>
#include <math.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
/* Demo program include files. */
#include "flop.h"
#ifndef mathSTACK_SIZE
#define mathSTACK_SIZE configMINIMAL_STACK_SIZE
#endif
#define mathNUMBER_OF_TASKS ( 4 )
/* Four tasks, each of which performs a different floating point calculation.
* Each of the four is created twice. */
static portTASK_FUNCTION_PROTO( vCompetingMathTask1, pvParameters );
static portTASK_FUNCTION_PROTO( vCompetingMathTask2, pvParameters );
static portTASK_FUNCTION_PROTO( vCompetingMathTask3, pvParameters );
static portTASK_FUNCTION_PROTO( vCompetingMathTask4, pvParameters );
/* These variables are used to check that all the tasks are still running. If a
* task gets a calculation wrong it will stop setting its check variable. */
static uint16_t usTaskCheck[ mathNUMBER_OF_TASKS ] = { ( uint16_t ) 0 };
/*-----------------------------------------------------------*/
void vStartMathTasks( UBaseType_t uxPriority )
{
xTaskCreate( vCompetingMathTask1, "Math1", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 0 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask2, "Math2", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 1 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask3, "Math3", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 2 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask4, "Math4", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 3 ] ), uxPriority, NULL );
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCompetingMathTask1, pvParameters )
{
volatile portDOUBLE d1, d2, d3, d4;
volatile uint16_t * pusTaskCheckVariable;
volatile portDOUBLE dAnswer;
short sError = pdFALSE;
/* Some ports require that tasks that use a hardware floating point unit
* tell the kernel that they require a floating point context before any
* floating point instructions are executed. */
portTASK_USES_FLOATING_POINT();
d1 = 123.4567;
d2 = 2345.6789;
d3 = -918.222;
dAnswer = ( d1 + d2 ) * d3;
/* The variable this task increments to show it is still running is passed in
* as the parameter. */
pusTaskCheckVariable = ( volatile uint16_t * ) pvParameters;
/* Keep performing a calculation and checking the result against a constant. */
for( ; ; )
{
d1 = 123.4567;
d2 = 2345.6789;
d3 = -918.222;
d4 = ( d1 + d2 ) * d3;
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* If the calculation does not match the expected constant, stop the
* increment of the check variable. */
if( fabs( d4 - dAnswer ) > 0.001 )
{
sError = pdTRUE;
}
if( sError == pdFALSE )
{
/* If the calculation has always been correct then set set the check
* variable. The check variable will get set to pdFALSE each time
* xAreMathsTaskStillRunning() is executed. */
( *pusTaskCheckVariable ) = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCompetingMathTask2, pvParameters )
{
volatile portDOUBLE d1, d2, d3, d4;
volatile uint16_t * pusTaskCheckVariable;
volatile portDOUBLE dAnswer;
short sError = pdFALSE;
/* Some ports require that tasks that use a hardware floating point unit
* tell the kernel that they require a floating point context before any
* floating point instructions are executed. */
portTASK_USES_FLOATING_POINT();
d1 = -389.38;
d2 = 32498.2;
d3 = -2.0001;
dAnswer = ( d1 / d2 ) * d3;
/* The variable this task increments to show it is still running is passed in
* as the parameter. */
pusTaskCheckVariable = ( volatile uint16_t * ) pvParameters;
/* Keep performing a calculation and checking the result against a constant. */
for( ; ; )
{
d1 = -389.38;
d2 = 32498.2;
d3 = -2.0001;
d4 = ( d1 / d2 ) * d3;
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* If the calculation does not match the expected constant, stop the
* increment of the check variable. */
if( fabs( d4 - dAnswer ) > 0.001 )
{
sError = pdTRUE;
}
if( sError == pdFALSE )
{
/* If the calculation has always been correct then set set the check
* variable. The check variable will get set to pdFALSE each time
* xAreMathsTaskStillRunning() is executed. */
( *pusTaskCheckVariable ) = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCompetingMathTask3, pvParameters )
{
volatile portDOUBLE * pdArray, dTotal1, dTotal2, dDifference;
volatile uint16_t * pusTaskCheckVariable;
const size_t xArraySize = 10;
size_t xPosition;
short sError = pdFALSE;
/* Some ports require that tasks that use a hardware floating point unit
* tell the kernel that they require a floating point context before any
* floating point instructions are executed. */
portTASK_USES_FLOATING_POINT();
/* The variable this task increments to show it is still running is passed in
* as the parameter. */
pusTaskCheckVariable = ( volatile uint16_t * ) pvParameters;
pdArray = ( portDOUBLE * ) pvPortMalloc( xArraySize * sizeof( portDOUBLE ) );
/* Keep filling an array, keeping a running total of the values placed in the
* array. Then run through the array adding up all the values. If the two totals
* do not match, stop the check variable from incrementing. */
for( ; ; )
{
dTotal1 = 0.0;
dTotal2 = 0.0;
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
{
pdArray[ xPosition ] = ( portDOUBLE ) xPosition + 5.5;
dTotal1 += ( portDOUBLE ) xPosition + 5.5;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
{
dTotal2 += pdArray[ xPosition ];
}
dDifference = dTotal1 - dTotal2;
if( fabs( dDifference ) > 0.001 )
{
sError = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
if( sError == pdFALSE )
{
/* If the calculation has always been correct then set set the check
* variable. The check variable will get set to pdFALSE each time
* xAreMathsTaskStillRunning() is executed. */
( *pusTaskCheckVariable ) = pdTRUE;
}
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCompetingMathTask4, pvParameters )
{
volatile portDOUBLE * pdArray, dTotal1, dTotal2, dDifference;
volatile uint16_t * pusTaskCheckVariable;
const size_t xArraySize = 10;
size_t xPosition;
short sError = pdFALSE;
/* Some ports require that tasks that use a hardware floating point unit
* tell the kernel that they require a floating point context before any
* floating point instructions are executed. */
portTASK_USES_FLOATING_POINT();
/* The variable this task increments to show it is still running is passed in
* as the parameter. */
pusTaskCheckVariable = ( volatile uint16_t * ) pvParameters;
pdArray = ( portDOUBLE * ) pvPortMalloc( xArraySize * sizeof( portDOUBLE ) );
/* Keep filling an array, keeping a running total of the values placed in the
* array. Then run through the array adding up all the values. If the two totals
* do not match, stop the check variable from incrementing. */
for( ; ; )
{
dTotal1 = 0.0;
dTotal2 = 0.0;
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
{
pdArray[ xPosition ] = ( portDOUBLE ) xPosition * 12.123;
dTotal1 += ( portDOUBLE ) xPosition * 12.123;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
{
dTotal2 += pdArray[ xPosition ];
}
dDifference = dTotal1 - dTotal2;
if( fabs( dDifference ) > 0.001 )
{
sError = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
if( sError == pdFALSE )
{
/* If the calculation has always been correct then set set the check
* variable. The check variable will get set to pdFALSE each time
* xAreMathsTaskStillRunning() is executed. */
( *pusTaskCheckVariable ) = pdTRUE;
}
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
BaseType_t xAreMathsTaskStillRunning( void )
{
BaseType_t xReturn = pdPASS, xTask;
/* Check the maths tasks are still running by ensuring their check variables
* have been set to pdPASS. */
for( xTask = 0; xTask < mathNUMBER_OF_TASKS; xTask++ )
{
if( usTaskCheck[ xTask ] != pdTRUE )
{
/* The check has not been set so the associated task has either
* stalled or detected an error. */
xReturn = pdFAIL;
}
else
{
/* Reset the variable so it can be checked again the next time this
* function is executed. */
usTaskCheck[ xTask ] = pdFALSE;
}
}
return xReturn;
}