728 lines
23 KiB
C
728 lines
23 KiB
C
/**
|
|
* @file
|
|
*
|
|
* Transmission Control Protocol, outgoing traffic
|
|
*
|
|
* The output functions of TCP.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
|
|
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
|
* OF SUCH DAMAGE.
|
|
*
|
|
* This file is part of the lwIP TCP/IP stack.
|
|
*
|
|
* Author: Adam Dunkels <adam@sics.se>
|
|
*
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include "lwip/def.h"
|
|
#include "lwip/opt.h"
|
|
#include "lwip/mem.h"
|
|
#include "lwip/memp.h"
|
|
#include "lwip/sys.h"
|
|
#include "lwip/ip_addr.h"
|
|
#include "lwip/netif.h"
|
|
#include "lwip/inet.h"
|
|
#include "lwip/tcp.h"
|
|
#include "lwip/stats.h"
|
|
#include "lwip/snmp.h"
|
|
|
|
#if LWIP_TCP
|
|
|
|
/* Forward declarations.*/
|
|
static void tcp_output_segment(struct tcp_seg *seg, struct tcp_pcb *pcb);
|
|
|
|
err_t
|
|
tcp_send_ctrl(struct tcp_pcb *pcb, u8_t flags)
|
|
{
|
|
/* no data, no length, flags, copy=1, no optdata, no optdatalen */
|
|
return tcp_enqueue(pcb, NULL, 0, flags, 1, NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* Write data for sending (but does not send it immediately).
|
|
*
|
|
* It waits in the expectation of more data being sent soon (as
|
|
* it can send them more efficiently by combining them together).
|
|
* To prompt the system to send data now, call tcp_output() after
|
|
* calling tcp_write().
|
|
*
|
|
* @arg pcb Protocol control block of the TCP connection to enqueue data for.
|
|
*
|
|
* @see tcp_write()
|
|
*/
|
|
|
|
err_t
|
|
tcp_write(struct tcp_pcb *pcb, const void *arg, u16_t len, u8_t copy)
|
|
{
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG, ("tcp_write(pcb=%p, arg=%p, len=%"U16_F", copy=%"U16_F")\n", (void *)pcb,
|
|
arg, len, (u16_t)copy));
|
|
/* connection is in valid state for data transmission? */
|
|
if (pcb->state == ESTABLISHED ||
|
|
pcb->state == CLOSE_WAIT ||
|
|
pcb->state == SYN_SENT ||
|
|
pcb->state == SYN_RCVD) {
|
|
if (len > 0) {
|
|
return tcp_enqueue(pcb, (void *)arg, len, 0, copy, NULL, 0);
|
|
}
|
|
return ERR_OK;
|
|
} else {
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | DBG_STATE | 3, ("tcp_write() called in invalid state\n"));
|
|
return ERR_CONN;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Enqueue either data or TCP options (but not both) for tranmission
|
|
*
|
|
*
|
|
*
|
|
* @arg pcb Protocol control block for the TCP connection to enqueue data for.
|
|
* @arg arg Pointer to the data to be enqueued for sending.
|
|
* @arg len Data length in bytes
|
|
* @arg flags
|
|
* @arg copy 1 if data must be copied, 0 if data is non-volatile and can be
|
|
* referenced.
|
|
* @arg optdata
|
|
* @arg optlen
|
|
*/
|
|
err_t
|
|
tcp_enqueue(struct tcp_pcb *pcb, void *arg, u16_t len,
|
|
u8_t flags, u8_t copy,
|
|
u8_t *optdata, u8_t optlen)
|
|
{
|
|
struct pbuf *p;
|
|
struct tcp_seg *seg, *useg, *queue;
|
|
u32_t left, seqno;
|
|
u16_t seglen;
|
|
void *ptr;
|
|
u8_t queuelen;
|
|
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG, ("tcp_enqueue(pcb=%p, arg=%p, len=%"U16_F", flags=%"X16_F", copy=%"U16_F")\n",
|
|
(void *)pcb, arg, len, (u16_t)flags, (u16_t)copy));
|
|
LWIP_ASSERT("tcp_enqueue: len == 0 || optlen == 0 (programmer violates API)",
|
|
len == 0 || optlen == 0);
|
|
LWIP_ASSERT("tcp_enqueue: arg == NULL || optdata == NULL (programmer violates API)",
|
|
arg == NULL || optdata == NULL);
|
|
/* fail on too much data */
|
|
if (len > pcb->snd_buf) {
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | 3, ("tcp_enqueue: too much data (len=%"U16_F" > snd_buf=%"U16_F")\n", len, pcb->snd_buf));
|
|
return ERR_MEM;
|
|
}
|
|
left = len;
|
|
ptr = arg;
|
|
|
|
/* seqno will be the sequence number of the first segment enqueued
|
|
* by the call to this function. */
|
|
seqno = pcb->snd_lbb;
|
|
|
|
LWIP_DEBUGF(TCP_QLEN_DEBUG, ("tcp_enqueue: queuelen: %"U16_F"\n", (u16_t)pcb->snd_queuelen));
|
|
|
|
/* If total number of pbufs on the unsent/unacked queues exceeds the
|
|
* configured maximum, return an error */
|
|
queuelen = pcb->snd_queuelen;
|
|
if (queuelen >= TCP_SND_QUEUELEN) {
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | 3, ("tcp_enqueue: too long queue %"U16_F" (max %"U16_F")\n", queuelen, TCP_SND_QUEUELEN));
|
|
TCP_STATS_INC(tcp.memerr);
|
|
return ERR_MEM;
|
|
}
|
|
if (queuelen != 0) {
|
|
LWIP_ASSERT("tcp_enqueue: pbufs on queue => at least one queue non-empty",
|
|
pcb->unacked != NULL || pcb->unsent != NULL);
|
|
} else {
|
|
LWIP_ASSERT("tcp_enqueue: no pbufs on queue => both queues empty",
|
|
pcb->unacked == NULL && pcb->unsent == NULL);
|
|
}
|
|
|
|
/* First, break up the data into segments and tuck them together in
|
|
* the local "queue" variable. */
|
|
useg = queue = seg = NULL;
|
|
seglen = 0;
|
|
while (queue == NULL || left > 0) {
|
|
|
|
/* The segment length should be the MSS if the data to be enqueued
|
|
* is larger than the MSS. */
|
|
seglen = left > pcb->mss? pcb->mss: left;
|
|
|
|
/* Allocate memory for tcp_seg, and fill in fields. */
|
|
seg = memp_malloc(MEMP_TCP_SEG);
|
|
if (seg == NULL) {
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | 2, ("tcp_enqueue: could not allocate memory for tcp_seg\n"));
|
|
goto memerr;
|
|
}
|
|
seg->next = NULL;
|
|
seg->p = NULL;
|
|
|
|
/* first segment of to-be-queued data? */
|
|
if (queue == NULL) {
|
|
queue = seg;
|
|
}
|
|
/* subsequent segments of to-be-queued data */
|
|
else {
|
|
/* Attach the segment to the end of the queued segments */
|
|
LWIP_ASSERT("useg != NULL", useg != NULL);
|
|
useg->next = seg;
|
|
}
|
|
/* remember last segment of to-be-queued data for next iteration */
|
|
useg = seg;
|
|
|
|
/* If copy is set, memory should be allocated
|
|
* and data copied into pbuf, otherwise data comes from
|
|
* ROM or other static memory, and need not be copied. If
|
|
* optdata is != NULL, we have options instead of data. */
|
|
|
|
/* options? */
|
|
if (optdata != NULL) {
|
|
if ((seg->p = pbuf_alloc(PBUF_TRANSPORT, optlen, PBUF_RAM)) == NULL) {
|
|
goto memerr;
|
|
}
|
|
++queuelen;
|
|
seg->dataptr = seg->p->payload;
|
|
}
|
|
/* copy from volatile memory? */
|
|
else if (copy) {
|
|
if ((seg->p = pbuf_alloc(PBUF_TRANSPORT, seglen, PBUF_RAM)) == NULL) {
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | 2, ("tcp_enqueue : could not allocate memory for pbuf copy size %"U16_F"\n", seglen));
|
|
goto memerr;
|
|
}
|
|
++queuelen;
|
|
if (arg != NULL) {
|
|
memcpy(seg->p->payload, ptr, seglen);
|
|
}
|
|
seg->dataptr = seg->p->payload;
|
|
}
|
|
/* do not copy data */
|
|
else {
|
|
/* First, allocate a pbuf for holding the data.
|
|
* since the referenced data is available at least until it is sent out on the
|
|
* link (as it has to be ACKed by the remote party) we can safely use PBUF_ROM
|
|
* instead of PBUF_REF here.
|
|
*/
|
|
if ((p = pbuf_alloc(PBUF_TRANSPORT, seglen, PBUF_ROM)) == NULL) {
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | 2, ("tcp_enqueue: could not allocate memory for zero-copy pbuf\n"));
|
|
goto memerr;
|
|
}
|
|
++queuelen;
|
|
/* reference the non-volatile payload data */
|
|
p->payload = ptr;
|
|
seg->dataptr = ptr;
|
|
|
|
/* Second, allocate a pbuf for the headers. */
|
|
if ((seg->p = pbuf_alloc(PBUF_TRANSPORT, 0, PBUF_RAM)) == NULL) {
|
|
/* If allocation fails, we have to deallocate the data pbuf as
|
|
* well. */
|
|
pbuf_free(p);
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | 2, ("tcp_enqueue: could not allocate memory for header pbuf\n"));
|
|
goto memerr;
|
|
}
|
|
++queuelen;
|
|
|
|
/* Concatenate the headers and data pbufs together. */
|
|
pbuf_cat(seg->p/*header*/, p/*data*/);
|
|
p = NULL;
|
|
}
|
|
|
|
/* Now that there are more segments queued, we check again if the
|
|
length of the queue exceeds the configured maximum. */
|
|
if (queuelen > TCP_SND_QUEUELEN) {
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | 2, ("tcp_enqueue: queue too long %"U16_F" (%"U16_F")\n", queuelen, TCP_SND_QUEUELEN));
|
|
goto memerr;
|
|
}
|
|
|
|
seg->len = seglen;
|
|
|
|
/* build TCP header */
|
|
if (pbuf_header(seg->p, TCP_HLEN)) {
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | 2, ("tcp_enqueue: no room for TCP header in pbuf.\n"));
|
|
TCP_STATS_INC(tcp.err);
|
|
goto memerr;
|
|
}
|
|
seg->tcphdr = seg->p->payload;
|
|
seg->tcphdr->src = htons(pcb->local_port);
|
|
seg->tcphdr->dest = htons(pcb->remote_port);
|
|
seg->tcphdr->seqno = htonl(seqno);
|
|
seg->tcphdr->urgp = 0;
|
|
TCPH_FLAGS_SET(seg->tcphdr, flags);
|
|
/* don't fill in tcphdr->ackno and tcphdr->wnd until later */
|
|
|
|
/* Copy the options into the header, if they are present. */
|
|
if (optdata == NULL) {
|
|
TCPH_HDRLEN_SET(seg->tcphdr, 5);
|
|
}
|
|
else {
|
|
TCPH_HDRLEN_SET(seg->tcphdr, (5 + optlen / 4));
|
|
/* Copy options into data portion of segment.
|
|
Options can thus only be sent in non data carrying
|
|
segments such as SYN|ACK. */
|
|
memcpy(seg->dataptr, optdata, optlen);
|
|
}
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | DBG_TRACE, ("tcp_enqueue: queueing %"U32_F":%"U32_F" (0x%"X16_F")\n",
|
|
ntohl(seg->tcphdr->seqno),
|
|
ntohl(seg->tcphdr->seqno) + TCP_TCPLEN(seg),
|
|
(u16_t)flags));
|
|
|
|
left -= seglen;
|
|
seqno += seglen;
|
|
ptr = (void *)((u8_t *)ptr + seglen);
|
|
}
|
|
|
|
/* Now that the data to be enqueued has been broken up into TCP
|
|
segments in the queue variable, we add them to the end of the
|
|
pcb->unsent queue. */
|
|
if (pcb->unsent == NULL) {
|
|
useg = NULL;
|
|
}
|
|
else {
|
|
for (useg = pcb->unsent; useg->next != NULL; useg = useg->next);
|
|
}
|
|
/* { useg is last segment on the unsent queue, NULL if list is empty } */
|
|
|
|
/* If there is room in the last pbuf on the unsent queue,
|
|
chain the first pbuf on the queue together with that. */
|
|
if (useg != NULL &&
|
|
TCP_TCPLEN(useg) != 0 &&
|
|
!(TCPH_FLAGS(useg->tcphdr) & (TCP_SYN | TCP_FIN)) &&
|
|
!(flags & (TCP_SYN | TCP_FIN)) &&
|
|
/* fit within max seg size */
|
|
useg->len + queue->len <= pcb->mss) {
|
|
/* Remove TCP header from first segment of our to-be-queued list */
|
|
pbuf_header(queue->p, -TCP_HLEN);
|
|
pbuf_cat(useg->p, queue->p);
|
|
useg->len += queue->len;
|
|
useg->next = queue->next;
|
|
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG | DBG_TRACE | DBG_STATE, ("tcp_enqueue: chaining segments, new len %"U16_F"\n", useg->len));
|
|
if (seg == queue) {
|
|
seg = NULL;
|
|
}
|
|
memp_free(MEMP_TCP_SEG, queue);
|
|
}
|
|
else {
|
|
/* empty list */
|
|
if (useg == NULL) {
|
|
/* initialize list with this segment */
|
|
pcb->unsent = queue;
|
|
}
|
|
/* enqueue segment */
|
|
else {
|
|
useg->next = queue;
|
|
}
|
|
}
|
|
if ((flags & TCP_SYN) || (flags & TCP_FIN)) {
|
|
++len;
|
|
}
|
|
pcb->snd_lbb += len;
|
|
|
|
pcb->snd_buf -= len;
|
|
|
|
/* update number of segments on the queues */
|
|
pcb->snd_queuelen = queuelen;
|
|
LWIP_DEBUGF(TCP_QLEN_DEBUG, ("tcp_enqueue: %"S16_F" (after enqueued)\n", pcb->snd_queuelen));
|
|
if (pcb->snd_queuelen != 0) {
|
|
LWIP_ASSERT("tcp_enqueue: valid queue length",
|
|
pcb->unacked != NULL || pcb->unsent != NULL);
|
|
}
|
|
|
|
/* Set the PSH flag in the last segment that we enqueued, but only
|
|
if the segment has data (indicated by seglen > 0). */
|
|
if (seg != NULL && seglen > 0 && seg->tcphdr != NULL) {
|
|
TCPH_SET_FLAG(seg->tcphdr, TCP_PSH);
|
|
}
|
|
|
|
return ERR_OK;
|
|
memerr:
|
|
TCP_STATS_INC(tcp.memerr);
|
|
|
|
if (queue != NULL) {
|
|
tcp_segs_free(queue);
|
|
}
|
|
if (pcb->snd_queuelen != 0) {
|
|
LWIP_ASSERT("tcp_enqueue: valid queue length", pcb->unacked != NULL ||
|
|
pcb->unsent != NULL);
|
|
}
|
|
LWIP_DEBUGF(TCP_QLEN_DEBUG | DBG_STATE, ("tcp_enqueue: %"S16_F" (with mem err)\n", pcb->snd_queuelen));
|
|
return ERR_MEM;
|
|
}
|
|
|
|
/* find out what we can send and send it */
|
|
err_t
|
|
tcp_output(struct tcp_pcb *pcb)
|
|
{
|
|
struct pbuf *p;
|
|
struct tcp_hdr *tcphdr;
|
|
struct tcp_seg *seg, *useg;
|
|
u32_t wnd;
|
|
#if TCP_CWND_DEBUG
|
|
s16_t i = 0;
|
|
#endif /* TCP_CWND_DEBUG */
|
|
|
|
/* First, check if we are invoked by the TCP input processing
|
|
code. If so, we do not output anything. Instead, we rely on the
|
|
input processing code to call us when input processing is done
|
|
with. */
|
|
if (tcp_input_pcb == pcb) {
|
|
return ERR_OK;
|
|
}
|
|
|
|
wnd = LWIP_MIN(pcb->snd_wnd, pcb->cwnd);
|
|
|
|
seg = pcb->unsent;
|
|
|
|
/* useg should point to last segment on unacked queue */
|
|
useg = pcb->unacked;
|
|
if (useg != NULL) {
|
|
for (; useg->next != NULL; useg = useg->next);
|
|
}
|
|
|
|
/* If the TF_ACK_NOW flag is set and no data will be sent (either
|
|
* because the ->unsent queue is empty or because the window does
|
|
* not allow it), construct an empty ACK segment and send it.
|
|
*
|
|
* If data is to be sent, we will just piggyback the ACK (see below).
|
|
*/
|
|
if (pcb->flags & TF_ACK_NOW &&
|
|
(seg == NULL ||
|
|
ntohl(seg->tcphdr->seqno) - pcb->lastack + seg->len > wnd)) {
|
|
p = pbuf_alloc(PBUF_IP, TCP_HLEN, PBUF_RAM);
|
|
if (p == NULL) {
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG, ("tcp_output: (ACK) could not allocate pbuf\n"));
|
|
return ERR_BUF;
|
|
}
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG, ("tcp_output: sending ACK for %"U32_F"\n", pcb->rcv_nxt));
|
|
/* remove ACK flags from the PCB, as we send an empty ACK now */
|
|
pcb->flags &= ~(TF_ACK_DELAY | TF_ACK_NOW);
|
|
|
|
tcphdr = p->payload;
|
|
tcphdr->src = htons(pcb->local_port);
|
|
tcphdr->dest = htons(pcb->remote_port);
|
|
tcphdr->seqno = htonl(pcb->snd_nxt);
|
|
tcphdr->ackno = htonl(pcb->rcv_nxt);
|
|
TCPH_FLAGS_SET(tcphdr, TCP_ACK);
|
|
tcphdr->wnd = htons(pcb->rcv_wnd);
|
|
tcphdr->urgp = 0;
|
|
TCPH_HDRLEN_SET(tcphdr, 5);
|
|
|
|
tcphdr->chksum = 0;
|
|
#if CHECKSUM_GEN_TCP
|
|
tcphdr->chksum = inet_chksum_pseudo(p, &(pcb->local_ip), &(pcb->remote_ip),
|
|
IP_PROTO_TCP, p->tot_len);
|
|
#endif
|
|
ip_output(p, &(pcb->local_ip), &(pcb->remote_ip), pcb->ttl, pcb->tos,
|
|
IP_PROTO_TCP);
|
|
pbuf_free(p);
|
|
|
|
return ERR_OK;
|
|
}
|
|
|
|
#if TCP_OUTPUT_DEBUG
|
|
if (seg == NULL) {
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG, ("tcp_output: nothing to send (%p)\n", (void*)pcb->unsent));
|
|
}
|
|
#endif /* TCP_OUTPUT_DEBUG */
|
|
#if TCP_CWND_DEBUG
|
|
if (seg == NULL) {
|
|
LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_output: snd_wnd %"U32_F", cwnd %"U16_F", wnd %"U32_F", seg == NULL, ack %"U32_F"\n",
|
|
pcb->snd_wnd, pcb->cwnd, wnd,
|
|
pcb->lastack));
|
|
} else {
|
|
LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_output: snd_wnd %"U32_F", cwnd %"U16_F", wnd %"U32_F", effwnd %"U32_F", seq %"U32_F", ack %"U32_F"\n",
|
|
pcb->snd_wnd, pcb->cwnd, wnd,
|
|
ntohl(seg->tcphdr->seqno) - pcb->lastack + seg->len,
|
|
ntohl(seg->tcphdr->seqno), pcb->lastack));
|
|
}
|
|
#endif /* TCP_CWND_DEBUG */
|
|
/* data available and window allows it to be sent? */
|
|
while (seg != NULL &&
|
|
ntohl(seg->tcphdr->seqno) - pcb->lastack + seg->len <= wnd) {
|
|
#if TCP_CWND_DEBUG
|
|
LWIP_DEBUGF(TCP_CWND_DEBUG, ("tcp_output: snd_wnd %"U32_F", cwnd %"U16_F", wnd %"U32_F", effwnd %"U32_F", seq %"U32_F", ack %"U32_F", i %"S16_F"\n",
|
|
pcb->snd_wnd, pcb->cwnd, wnd,
|
|
ntohl(seg->tcphdr->seqno) + seg->len -
|
|
pcb->lastack,
|
|
ntohl(seg->tcphdr->seqno), pcb->lastack, i));
|
|
++i;
|
|
#endif /* TCP_CWND_DEBUG */
|
|
|
|
pcb->unsent = seg->next;
|
|
|
|
if (pcb->state != SYN_SENT) {
|
|
TCPH_SET_FLAG(seg->tcphdr, TCP_ACK);
|
|
pcb->flags &= ~(TF_ACK_DELAY | TF_ACK_NOW);
|
|
}
|
|
|
|
tcp_output_segment(seg, pcb);
|
|
pcb->snd_nxt = ntohl(seg->tcphdr->seqno) + TCP_TCPLEN(seg);
|
|
if (TCP_SEQ_LT(pcb->snd_max, pcb->snd_nxt)) {
|
|
pcb->snd_max = pcb->snd_nxt;
|
|
}
|
|
/* put segment on unacknowledged list if length > 0 */
|
|
if (TCP_TCPLEN(seg) > 0) {
|
|
seg->next = NULL;
|
|
/* unacked list is empty? */
|
|
if (pcb->unacked == NULL) {
|
|
pcb->unacked = seg;
|
|
useg = seg;
|
|
/* unacked list is not empty? */
|
|
} else {
|
|
/* In the case of fast retransmit, the packet should not go to the tail
|
|
* of the unacked queue, but rather at the head. We need to check for
|
|
* this case. -STJ Jul 27, 2004 */
|
|
if (TCP_SEQ_LT(ntohl(seg->tcphdr->seqno), ntohl(useg->tcphdr->seqno))){
|
|
/* add segment to head of unacked list */
|
|
seg->next = pcb->unacked;
|
|
pcb->unacked = seg;
|
|
} else {
|
|
/* add segment to tail of unacked list */
|
|
useg->next = seg;
|
|
useg = useg->next;
|
|
}
|
|
}
|
|
/* do not queue empty segments on the unacked list */
|
|
} else {
|
|
tcp_seg_free(seg);
|
|
}
|
|
seg = pcb->unsent;
|
|
}
|
|
return ERR_OK;
|
|
}
|
|
|
|
/**
|
|
* Actually send a TCP segment over IP
|
|
*/
|
|
static void
|
|
tcp_output_segment(struct tcp_seg *seg, struct tcp_pcb *pcb)
|
|
{
|
|
u16_t len;
|
|
struct netif *netif;
|
|
|
|
/** @bug Exclude retransmitted segments from this count. */
|
|
snmp_inc_tcpoutsegs();
|
|
|
|
/* The TCP header has already been constructed, but the ackno and
|
|
wnd fields remain. */
|
|
seg->tcphdr->ackno = htonl(pcb->rcv_nxt);
|
|
|
|
/* silly window avoidance */
|
|
if (pcb->rcv_wnd < pcb->mss) {
|
|
seg->tcphdr->wnd = 0;
|
|
} else {
|
|
/* advertise our receive window size in this TCP segment */
|
|
seg->tcphdr->wnd = htons(pcb->rcv_wnd);
|
|
}
|
|
|
|
/* If we don't have a local IP address, we get one by
|
|
calling ip_route(). */
|
|
if (ip_addr_isany(&(pcb->local_ip))) {
|
|
netif = ip_route(&(pcb->remote_ip));
|
|
if (netif == NULL) {
|
|
return;
|
|
}
|
|
ip_addr_set(&(pcb->local_ip), &(netif->ip_addr));
|
|
}
|
|
|
|
pcb->rtime = 0;
|
|
|
|
if (pcb->rttest == 0) {
|
|
pcb->rttest = tcp_ticks;
|
|
pcb->rtseq = ntohl(seg->tcphdr->seqno);
|
|
|
|
LWIP_DEBUGF(TCP_RTO_DEBUG, ("tcp_output_segment: rtseq %"U32_F"\n", pcb->rtseq));
|
|
}
|
|
LWIP_DEBUGF(TCP_OUTPUT_DEBUG, ("tcp_output_segment: %"U32_F":%"U32_F"\n",
|
|
htonl(seg->tcphdr->seqno), htonl(seg->tcphdr->seqno) +
|
|
seg->len));
|
|
|
|
len = (u16_t)((u8_t *)seg->tcphdr - (u8_t *)seg->p->payload);
|
|
|
|
seg->p->len -= len;
|
|
seg->p->tot_len -= len;
|
|
|
|
seg->p->payload = seg->tcphdr;
|
|
|
|
seg->tcphdr->chksum = 0;
|
|
#if CHECKSUM_GEN_TCP
|
|
seg->tcphdr->chksum = inet_chksum_pseudo(seg->p,
|
|
&(pcb->local_ip),
|
|
&(pcb->remote_ip),
|
|
IP_PROTO_TCP, seg->p->tot_len);
|
|
#endif
|
|
TCP_STATS_INC(tcp.xmit);
|
|
|
|
ip_output(seg->p, &(pcb->local_ip), &(pcb->remote_ip), pcb->ttl, pcb->tos,
|
|
IP_PROTO_TCP);
|
|
}
|
|
|
|
void
|
|
tcp_rst(u32_t seqno, u32_t ackno,
|
|
struct ip_addr *local_ip, struct ip_addr *remote_ip,
|
|
u16_t local_port, u16_t remote_port)
|
|
{
|
|
struct pbuf *p;
|
|
struct tcp_hdr *tcphdr;
|
|
p = pbuf_alloc(PBUF_IP, TCP_HLEN, PBUF_RAM);
|
|
if (p == NULL) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_rst: could not allocate memory for pbuf\n"));
|
|
return;
|
|
}
|
|
|
|
tcphdr = p->payload;
|
|
tcphdr->src = htons(local_port);
|
|
tcphdr->dest = htons(remote_port);
|
|
tcphdr->seqno = htonl(seqno);
|
|
tcphdr->ackno = htonl(ackno);
|
|
TCPH_FLAGS_SET(tcphdr, TCP_RST | TCP_ACK);
|
|
tcphdr->wnd = htons(TCP_WND);
|
|
tcphdr->urgp = 0;
|
|
TCPH_HDRLEN_SET(tcphdr, 5);
|
|
|
|
tcphdr->chksum = 0;
|
|
#if CHECKSUM_GEN_TCP
|
|
tcphdr->chksum = inet_chksum_pseudo(p, local_ip, remote_ip,
|
|
IP_PROTO_TCP, p->tot_len);
|
|
#endif
|
|
TCP_STATS_INC(tcp.xmit);
|
|
snmp_inc_tcpoutrsts();
|
|
/* Send output with hardcoded TTL since we have no access to the pcb */
|
|
ip_output(p, local_ip, remote_ip, TCP_TTL, 0, IP_PROTO_TCP);
|
|
pbuf_free(p);
|
|
LWIP_DEBUGF(TCP_RST_DEBUG, ("tcp_rst: seqno %"U32_F" ackno %"U32_F".\n", seqno, ackno));
|
|
}
|
|
|
|
/* requeue all unacked segments for retransmission */
|
|
void
|
|
tcp_rexmit_rto(struct tcp_pcb *pcb)
|
|
{
|
|
struct tcp_seg *seg;
|
|
|
|
if (pcb->unacked == NULL) {
|
|
return;
|
|
}
|
|
|
|
/* Move all unacked segments to the head of the unsent queue */
|
|
for (seg = pcb->unacked; seg->next != NULL; seg = seg->next);
|
|
/* concatenate unsent queue after unacked queue */
|
|
seg->next = pcb->unsent;
|
|
/* unsent queue is the concatenated queue (of unacked, unsent) */
|
|
pcb->unsent = pcb->unacked;
|
|
/* unacked queue is now empty */
|
|
pcb->unacked = NULL;
|
|
|
|
pcb->snd_nxt = ntohl(pcb->unsent->tcphdr->seqno);
|
|
/* increment number of retransmissions */
|
|
++pcb->nrtx;
|
|
|
|
/* Don't take any RTT measurements after retransmitting. */
|
|
pcb->rttest = 0;
|
|
|
|
/* Do the actual retransmission */
|
|
tcp_output(pcb);
|
|
}
|
|
|
|
void
|
|
tcp_rexmit(struct tcp_pcb *pcb)
|
|
{
|
|
struct tcp_seg *seg;
|
|
|
|
if (pcb->unacked == NULL) {
|
|
return;
|
|
}
|
|
|
|
/* Move the first unacked segment to the unsent queue */
|
|
seg = pcb->unacked->next;
|
|
pcb->unacked->next = pcb->unsent;
|
|
pcb->unsent = pcb->unacked;
|
|
pcb->unacked = seg;
|
|
|
|
pcb->snd_nxt = ntohl(pcb->unsent->tcphdr->seqno);
|
|
|
|
++pcb->nrtx;
|
|
|
|
/* Don't take any rtt measurements after retransmitting. */
|
|
pcb->rttest = 0;
|
|
|
|
/* Do the actual retransmission. */
|
|
snmp_inc_tcpretranssegs();
|
|
tcp_output(pcb);
|
|
|
|
}
|
|
|
|
|
|
void
|
|
tcp_keepalive(struct tcp_pcb *pcb)
|
|
{
|
|
struct pbuf *p;
|
|
struct tcp_hdr *tcphdr;
|
|
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_keepalive: sending KEEPALIVE probe to %"U16_F".%"U16_F".%"U16_F".%"U16_F"\n",
|
|
ip4_addr1(&pcb->remote_ip), ip4_addr2(&pcb->remote_ip),
|
|
ip4_addr3(&pcb->remote_ip), ip4_addr4(&pcb->remote_ip)));
|
|
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_keepalive: tcp_ticks %"U32_F" pcb->tmr %"U32_F" pcb->keep_cnt %"U16_F"\n", tcp_ticks, pcb->tmr, pcb->keep_cnt));
|
|
|
|
p = pbuf_alloc(PBUF_IP, TCP_HLEN, PBUF_RAM);
|
|
|
|
if(p == NULL) {
|
|
LWIP_DEBUGF(TCP_DEBUG, ("tcp_keepalive: could not allocate memory for pbuf\n"));
|
|
return;
|
|
}
|
|
|
|
tcphdr = p->payload;
|
|
tcphdr->src = htons(pcb->local_port);
|
|
tcphdr->dest = htons(pcb->remote_port);
|
|
tcphdr->seqno = htonl(pcb->snd_nxt - 1);
|
|
tcphdr->ackno = htonl(pcb->rcv_nxt);
|
|
tcphdr->wnd = htons(pcb->rcv_wnd);
|
|
tcphdr->urgp = 0;
|
|
TCPH_HDRLEN_SET(tcphdr, 5);
|
|
|
|
tcphdr->chksum = 0;
|
|
#if CHECKSUM_GEN_TCP
|
|
tcphdr->chksum = inet_chksum_pseudo(p, &pcb->local_ip, &pcb->remote_ip, IP_PROTO_TCP, p->tot_len);
|
|
#endif
|
|
TCP_STATS_INC(tcp.xmit);
|
|
|
|
/* Send output to IP */
|
|
ip_output(p, &pcb->local_ip, &pcb->remote_ip, pcb->ttl, 0, IP_PROTO_TCP);
|
|
|
|
pbuf_free(p);
|
|
|
|
LWIP_DEBUGF(TCP_RST_DEBUG, ("tcp_keepalive: seqno %"U32_F" ackno %"U32_F".\n", pcb->snd_nxt - 1, pcb->rcv_nxt));
|
|
}
|
|
|
|
#endif /* LWIP_TCP */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|