denyhosts/clamav/libclamav/nsis/infblock.c

713 lines
22 KiB
C
Raw Permalink Normal View History

2022-10-22 18:41:00 +08:00
/*
* This file is a part of the zlib compression module for NSIS.
*
* Copyright and license information can be found below.
* Modifications Copyright (C) 1999-2007 Nullsoft and Contributors
*
* The original zlib source code is available at
* http://www.zlib.net/
*
* This software is provided 'as-is', without any express or implied
* warranty.
*/
/*
* Copyright (C) 1995-1998 Jean-loup Gailly.
* For conditions of distribution and use, see copyright notice in COPYING.nsis
*/
#include "nsis_zutil.h"
#include <string.h>
#ifndef min
# define min(x,y) ((x<y)?x:y)
#endif
/* defines for inflate input/output */
/* update pointers and return */
#define UPDBITS {s->bitb=b;s->bitk=k;}
#define UPDIN {z->avail_in=n;z->next_in=p;}
#define UPDOUT {s->write=q;}
#define UPDATE {UPDBITS UPDIN UPDOUT}
#define LEAVE(r) {UPDATE inflate_flush(z); return r;}
/* get bytes and bits */
#define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
#define NEEDBYTE {if(!n)LEAVE(Z_OK)}
#define NEXTBYTE (n--,*p++)
#define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
#define DUMPBITS(j) {b>>=(j);k-=(j);}
/* output bytes */
#define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
#define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
#define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
#define FLUSH {UPDOUT inflate_flush(z); LOADOUT}
#define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE(Z_OK)}}}
#define OUTBYTE(a) {*q++=(Byte)(a);m--;}
/* load local pointers */
#define LOAD {LOADIN LOADOUT}
#define LAST (s->last == DRY)
typedef struct inflate_blocks_state FAR inflate_blocks_statef;
#define exop word.what.Exop
#define bits word.what.Bits
/* And'ing with mask[n] masks the lower n bits */
local const unsigned short inflate_mask[17] = {
0x0000,
0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
}; /* use to reduce .data #define INFLATE_MASK(x, n) (x & (~((unsigned short) 0xFFFF << n))) */
local const char border[] = { /* Order of the bit length code lengths */
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
/* Tables for deflate from PKZIP's appnote.txt. */
local const unsigned short cplens[31] = { /* Copy lengths for literal codes 257..285 */
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
/* see note #13 above about 258 */
local const unsigned short cplext[31] = { /* Extra bits for literal codes 257..285 */
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
local const unsigned short cpdist[30] = { /* Copy offsets for distance codes 0..29 */
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
8193, 12289, 16385, 24577};
local const unsigned short cpdext[30] = { /* Extra bits for distance codes */
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
12, 12, 13, 13};
/* build fixed tables only once--keep them here */
/* local char fixed_built = 0; */
/* local inflate_huft fixed_mem[FIXEDH]; */
/* local uInt fixed_bl=9; */
/* local uInt fixed_bd=5; */
/* local inflate_huft *fixed_tl; */
/* local inflate_huft *fixed_td; */
/* copy as much as possible from the sliding window to the output area */
local void ZEXPORT inflate_flush(nsis_z_streamp z)
{
inflate_blocks_statef *s = &z->blocks;
uInt n;
Bytef *q;
/* local copies of source and destination pointers */
q = s->read;
again:
/* compute number of bytes to copy as far as end of window */
n = (uInt)((q <= s->write ? s->write : s->end) - q);
n = min(n, z->avail_out);
/* update counters */
z->avail_out -= n;
/* z->total_out += n; */
/* copy as far as end of window */
zmemcpy(z->next_out, q, n);
z->next_out += n;
q += n;
/* see if more to copy at beginning of window */
if (q == s->end)
{
/* wrap pointers */
q = s->window;
if (s->write == s->end)
s->write = s->window;
/* do the same for the beginning of the window */
goto again;
}
/* update pointers */
s->read = q;
}
#define BMAX 15 /* maximum bit length of any code */
local int ZEXPORT huft_build(
uIntf *b, /* code lengths in bits (all assumed <= BMAX) */
uInt n, /* number of codes (assumed <= 288) */
uInt s, /* number of simple-valued codes (0..s-1) */
const unsigned short *d, /* list of base values for non-simple codes */
const unsigned short *e, /* list of extra bits for non-simple codes */
inflate_huft * FAR *t, /* result: starting table */
uIntf *m, /* maximum lookup bits, returns actual */
inflate_huft *hp, /* space for trees */
uInt *hn, /* working area: values in order of bit length */
uIntf *v) /* work area for huft_build */
{
uInt a; /* counter for codes of length k */
uInt c[BMAX+1]; /* bit length count table */
uInt f; /* i repeats in table every f entries */
int g; /* maximum code length */
int h; /* table level */
uInt i; /* counter, current code */
uInt j; /* counter */
int k; /* number of bits in current code */
int l; /* bits per table (returned in m) */
uIntf *p; /* pointer into c[], b[], or v[] */
inflate_huft *q; /* points to current table */
struct inflate_huft_s r; /* table entry for structure assignment */
inflate_huft *u[BMAX]; /* table stack */
int w; /* bits before this table == (l * h) */
uInt x[BMAX+1]; /* bit offsets, then code stack */
uIntf *xp; /* pointer into x */
int y; /* number of dummy codes added */
uInt z; /* number of entries in current table */
/* Generate counts for each bit length */
p=c;
y=16; while (y--) *p++ = 0;
p = b;
i = n;
do {
c[*p++]++; /* assume all entries <= BMAX */
} while (--i);
if (c[0] == n) /* null input--all zero length codes */
{
*t = (inflate_huft *)Z_NULL;
*m = 0;
return Z_OK;
}
/* Find minimum and maximum length, bound *m by those */
l = *m;
for (j = 1; j <= BMAX; j++)
if (c[j])
break;
k = j; /* minimum code length */
if ((uInt)l < j)
l = j;
for (i = BMAX; i; i--)
if (c[i])
break;
g = i; /* maximum code length */
if ((uInt)l > i)
l = i;
*m = l;
/* Adjust last length count to fill out codes, if needed */
for (y = 1 << j; j < i; j++, y <<= 1)
if ((y -= c[j]) < 0)
return Z_DATA_ERROR;
if ((y -= c[i]) < 0)
return Z_DATA_ERROR;
c[i] += y;
/* Generate starting offsets into the value table for each length */
x[1] = j = 0;
p = c + 1; xp = x + 2;
while (--i) { /* note that i == g from above */
*xp++ = (j += *p++);
}
/* Make a table of values in order of bit lengths */
p = b; i = 0;
do {
if ((j = *p++) != 0)
v[x[j]++] = i;
} while (++i < n);
n = x[g]; /* set n to length of v */
/* Generate the Huffman codes and for each, make the table entries */
x[0] = i = 0; /* first Huffman code is zero */
p = v; /* grab values in bit order */
h = -1; /* no tables yet--level -1 */
w = -l; /* bits decoded == (l * h) */
u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
q = (inflate_huft *)Z_NULL; /* ditto */
z = 0; /* ditto */
r.base = 0;
/* go through the bit lengths (k already is bits in shortest code) */
for (; k <= g; k++)
{
a = c[k];
while (a--)
{
int nextw=w;
/* here i is the Huffman code of length k bits for value *p */
/* make tables up to required level */
while (k > (nextw=w + l))
{
h++;
/* compute minimum size table less than or equal to l bits */
z = g - nextw;
z = z > (uInt)l ? (uInt)l : z; /* table size upper limit */
if ((f = 1 << (j = k - nextw)) > a + 1) /* try a k-w bit table */
{ /* too few codes for k-w bit table */
f -= a + 1; /* deduct codes from patterns left */
xp = c + k;
if (j < z)
while (++j < z && (f <<= 1) > *++xp) /* try smaller tables up to z bits */
{
f -= *xp; /* else deduct codes from patterns */
}
}
z = 1 << j; /* table entries for j-bit table */
/* allocate new table */
if (*hn + z > MANY) /* (note: doesn't matter for fixed) */
return Z_MEM_ERROR; /* not enough memory */
u[h] = q = hp + *hn;
*hn += z;
/* connect to last table, if there is one */
if (h)
{
x[h] = i; /* save pattern for backing up */
r.bits = (Byte)l; /* bits to dump before this table */
r.exop = (Byte)j; /* bits in this table */
j = i >> w;
r.base = (uInt)(q - u[h-1] - j); /* offset to this table */
u[h-1][j] = r; /* connect to last table */
}
else
*t = q; /* first table is returned result */
w=nextw; /* previous table always l bits */
}
/* set up table entry in r */
r.bits = (Byte)(k - w);
if (p >= v + n)
r.exop = 128 + 64; /* out of values--invalid code */
else if (*p < s)
{
r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
r.base = *p++; /* simple code is just the value */
}
else
{
r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
r.base = d[*p++ - s];
}
/* fill code-like entries with r */
f = 1 << (k - w);
for (j = i >> w; j < z; j += f)
q[j] = r;
/* backwards increment the k-bit code i */
for (j = 1 << (k - 1); i & j; j >>= 1)
i ^= j;
i ^= j;
/* backup over finished tables */
while ((i & ((1 << w) - 1)) != x[h])
{
h--; /* don't need to update q */
w -= l;
}
}
}
/* Return Z_BUF_ERROR if we were given an incomplete table */
return (y != 0 && g != 1) ? Z_BUF_ERROR : Z_OK;
}
int ZEXPORT nsis_inflate(nsis_z_streamp z)
{
inflate_blocks_statef *s = &z->blocks;
inflate_codes_statef *c = &s->sub.decode.t_codes; /* codes state */
/* lousy two bytes saved by doing this */
struct
{
uInt t; /* temporary storage */
uLong b; /* bit buffer */
uInt k; /* bits in bit buffer */
Bytef *p; /* input data pointer */
uInt n; /* bytes available there */
Bytef *q; /* output window write pointer */
uInt m; /* bytes to end of window or read pointer */
/* CODES variables */
inflate_huft *j; /* temporary pointer */
uInt e; /* extra bits or operation */
Bytef *f; /* pointer to copy strings from */
} _state;
#define t _state.t
#define b _state.b
#define k _state.k
#define p _state.p
#define n _state.n
#define q _state.q
#define m _state.m
/* copy input/output information to locals (UPDATE macro restores) */
LOAD
/* process input based on current state */
for (;;) switch (s->mode)
{
case TYPE:
NEEDBITS(3)
t = (uInt)b & 7;
DUMPBITS(3)
s->last = (t & 1) ? DRY : TYPE;
switch (t >> 1)
{
case 0: /* stored */
Tracev((stderr, "inflate: stored block%s\n",
LAST ? " (last)" : ""));
DUMPBITS(k&7)
s->mode = LENS; /* get length of stored block */
break;
case 1: /* fixed */
Tracev((stderr, "inflate: fixed codes block%s\n",
LAST ? " (last)" : ""));
{
if (!s->zs.fixed_built)
{
int _k; /* temporary variable */
uInt f = 0; /* number of hufts used in fixed_mem */
/* literal table */
for (_k = 0; _k < 288; _k++)
{
char v=8;
if (_k > 143)
{
if (_k < 256) v++;
else if (_k < 280) v--;
}
s->zs.lc[_k] = v;
}
huft_build(s->zs.lc, 288, 257, cplens, cplext, &s->zs.fixed_tl, &s->zs.fixed_bl, s->zs.fixed_mem, &f, s->zs.v);
/* distance table */
for (_k = 0; _k < 30; _k++) s->zs.lc[_k] = 5;
huft_build(s->zs.lc, 30, 0, cpdist, cpdext, &s->zs.fixed_td, &s->zs.fixed_bd, s->zs.fixed_mem, &f, s->zs.v);
/* done */
s->zs.fixed_built++;
}
/* s->sub.decode.t_codes.mode = CODES_START; */
s->sub.decode.t_codes.lbits = (Byte)s->zs.fixed_bl;
s->sub.decode.t_codes.dbits = (Byte)s->zs.fixed_bd;
s->sub.decode.t_codes.ltree = s->zs.fixed_tl;
s->sub.decode.t_codes.dtree = s->zs.fixed_td;
}
s->mode = CODES_START;
break;
case 2: /* dynamic */
Tracev((stderr, "inflate: dynamic codes block%s\n",
LAST ? " (last)" : ""));
s->mode = TABLE;
break;
case 3: /* illegal */
/* the only illegal value possible is 3 because we check only 2 bits */
goto bad;
}
break;
case LENS:
NEEDBITS(16)
s->sub.left = (uInt)b & 0xffff;
b = k = 0; /* dump bits */
Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
s->mode = s->sub.left ? STORED : (inflate_mode)s->last;
break;
case STORED:
{
uInt mn;
if (n == 0)
LEAVE(Z_OK)
NEEDOUT
mn = min(m, n);
t = min(s->sub.left, mn);
zmemcpy(q, p, t);
p += t; n -= t;
q += t; m -= t;
if (!(s->sub.left -= t))
s->mode = (inflate_mode)s->last;
break;
}
case TABLE:
NEEDBITS(14)
s->sub.trees.table = t = (uInt)b & 0x3fff;
if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
{
s->mode = NZ_BAD;
LEAVE(Z_DATA_ERROR);
}
/* t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f); */
DUMPBITS(14)
s->sub.trees.index = 0;
Tracev((stderr, "inflate: table sizes ok\n"));
s->mode = BTREE;
case BTREE:
while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
{
NEEDBITS(3)
s->sub.trees.t_blens[(int)border[s->sub.trees.index++]] = (uInt)b & 7;
DUMPBITS(3)
}
while (s->sub.trees.index < 19)
s->sub.trees.t_blens[(int)border[s->sub.trees.index++]] = 0;
s->sub.trees.bb = 7;
{
uInt hn = 0; /* hufts used in space */
t = huft_build(s->sub.trees.t_blens, 19, 19, Z_NULL, Z_NULL,
&s->sub.trees.tb, &s->sub.trees.bb, s->hufts, &hn, s->zs.v);
if (t != Z_OK || !s->sub.trees.bb)
{
s->mode = NZ_BAD;
break;
}
}
s->sub.trees.index = 0;
Tracev((stderr, "inflate: bits tree ok\n"));
s->mode = DTREE;
case DTREE:
while (t = s->sub.trees.table,
s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
{
inflate_huft *h;
uInt i, j, d;
t = s->sub.trees.bb;
NEEDBITS(t)
h = s->sub.trees.tb + ((uInt)b & (uInt)inflate_mask[t]);
t = h->bits;
d = h->base;
if (d < 16)
{
DUMPBITS(t)
s->sub.trees.t_blens[s->sub.trees.index++] = d;
}
else /* d == 16..18 */
{
if (d == 18)
{
i=7;
j=11;
}
else
{
i=d-14;
j=3;
}
NEEDBITS(t+i)
DUMPBITS(t)
j += (uInt)b & (uInt)inflate_mask[i];
DUMPBITS(i)
i = s->sub.trees.index;
t = s->sub.trees.table;
if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
(d == 16 && i < 1))
{
s->mode = NZ_BAD;
LEAVE(Z_DATA_ERROR);
}
d = d == 16 ? s->sub.trees.t_blens[i - 1] : 0;
do {
s->sub.trees.t_blens[i++] = d;
} while (--j);
s->sub.trees.index = i;
}
}
s->sub.trees.tb = Z_NULL;
{
uInt hn = 0; /* hufts used in space */
uInt bl, bd;
inflate_huft *tl, *td;
int nl,nd;
t = s->sub.trees.table;
nl = 257 + (t & 0x1f);
nd = 1 + ((t >> 5) & 0x1f);
bl = 9; /* must be <= 9 for lookahead assumptions */
bd = 6; /* must be <= 9 for lookahead assumptions */
t = huft_build(s->sub.trees.t_blens, nl, 257, cplens, cplext, &tl, &bl, s->hufts, &hn, s->zs.v);
if (bl == 0) t = Z_DATA_ERROR;
if (t == Z_OK)
{
/* build distance tree */
t = huft_build(s->sub.trees.t_blens + nl, nd, 0, cpdist, cpdext, &td, &bd, s->hufts, &hn, s->zs.v);
}
if (t != Z_OK || (bd == 0 && nl > 257))
{
s->mode = NZ_BAD;
LEAVE(Z_DATA_ERROR);
}
Tracev((stderr, "inflate: trees ok\n"));
/* s->sub.decode.t_codes.mode = CODES_START; */
s->sub.decode.t_codes.lbits = (Byte)bl;
s->sub.decode.t_codes.dbits = (Byte)bd;
s->sub.decode.t_codes.ltree = tl;
s->sub.decode.t_codes.dtree = td;
}
s->mode = CODES_START;
#define j (_state.j)
#define e (_state.e)
#define f (_state.f)
/* waiting for "i:"=input, "o:"=output, "x:"=nothing */
case CODES_START: /* x: set up for LEN */
c->sub.code.need = c->lbits;
c->sub.code.tree = c->ltree;
s->mode = CODES_LEN;
case CODES_LEN: /* i: get length/literal/eob next */
t = c->sub.code.need;
NEEDBITS(t)
j = c->sub.code.tree + ((uInt)b & (uInt)inflate_mask[t]);
DUMPBITS(j->bits)
e = (uInt)(j->exop);
if (e == 0) /* literal */
{
c->sub.lit = j->base;
s->mode = CODES_LIT;
break;
}
if (e & 16) /* length */
{
c->sub.copy.get = e & 15;
c->len = j->base;
s->mode = CODES_LENEXT;
break;
}
if ((e & 64) == 0) /* next table */
{
c->sub.code.need = e;
c->sub.code.tree = j + j->base;
break;
}
if (e & 32) /* end of block */
{
s->mode = CODES_WASH;
break;
}
goto bad;
case CODES_LENEXT: /* i: getting length extra (have base) */
t = c->sub.copy.get;
NEEDBITS(t)
c->len += (uInt)b & (uInt)inflate_mask[t];
DUMPBITS(t)
c->sub.code.need = c->dbits;
c->sub.code.tree = c->dtree;
s->mode = CODES_DIST;
case CODES_DIST: /* i: get distance next */
t = c->sub.code.need;
NEEDBITS(t)
j = c->sub.code.tree + ((uInt)b & (uInt)inflate_mask[t]);
DUMPBITS(j->bits)
e = (uInt)(j->exop);
if (e & 16) /* distance */
{
c->sub.copy.get = e & 15;
c->sub.copy.dist = j->base;
s->mode = CODES_DISTEXT;
break;
}
if ((e & 64) == 0) /* next table */
{
c->sub.code.need = e;
c->sub.code.tree = j + j->base;
break;
}
goto bad; /* invalid code */
case CODES_DISTEXT: /* i: getting distance extra */
t = c->sub.copy.get;
NEEDBITS(t)
c->sub.copy.dist += (uInt)b & (uInt)inflate_mask[t];
DUMPBITS(t)
s->mode = CODES_COPY;
case CODES_COPY: /* o: copying bytes in window, waiting for space */
f = (uInt)(q - s->window) < c->sub.copy.dist ?
s->end - (c->sub.copy.dist - (q - s->window)) :
q - c->sub.copy.dist;
while (c->len)
{
NEEDOUT
OUTBYTE(*f++)
if (f == s->end)
f = s->window;
c->len--;
}
s->mode = CODES_START;
break;
case CODES_LIT: /* o: got literal, waiting for output space */
NEEDOUT
OUTBYTE(c->sub.lit)
s->mode = CODES_START;
break;
case CODES_WASH: /* o: got eob, possibly more output */
if (k > 7) /* return unused byte, if any */
{
k -= 8;
n++;
p--; /* can always return one */
}
/* flushing will be done in DRY */
#undef j
#undef e
#undef f
case DRY:
FLUSH
if (s->write != s->read)
LEAVE(Z_OK)
if (s->mode == CODES_WASH)
{
Tracev((stderr, "inflate: codes end, %lu total out\n",
z->total_out + (q >= s->read ? q - s->read :
(s->end - s->read) + (q - s->window))));
}
/* DRY if last, TYPE if not */
s->mode = (inflate_mode)s->last;
if (s->mode == TYPE)
break;
LEAVE(Z_STREAM_END)
/*case BAD:
r = Z_DATA_ERROR;
LEAVE
*/
default: /* we'll call Z_STREAM_ERROR if BAD anyway */
bad:
s->mode = NZ_BAD;
LEAVE(Z_STREAM_ERROR)
}
}
#undef t
#undef b
#undef k
#undef p
#undef n
#undef q
#undef m