denyhosts/clamav/libclamav_rust/.cargo/vendor/image/src/image.rs

1846 lines
59 KiB
Rust
Raw Normal View History

2023-01-14 18:28:39 +08:00
#![allow(clippy::too_many_arguments)]
use std::convert::TryFrom;
use std::ffi::OsStr;
use std::io;
use std::io::Read;
use std::ops::{Deref, DerefMut};
use std::path::Path;
use std::usize;
use crate::color::{ColorType, ExtendedColorType};
use crate::error::{
ImageError, ImageFormatHint, ImageResult, LimitError, LimitErrorKind, ParameterError,
ParameterErrorKind,
};
use crate::math::Rect;
use crate::traits::Pixel;
use crate::ImageBuffer;
use crate::animation::Frames;
#[cfg(feature = "pnm")]
use crate::codecs::pnm::PnmSubtype;
/// An enumeration of supported image formats.
/// Not all formats support both encoding and decoding.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
#[non_exhaustive]
pub enum ImageFormat {
/// An Image in PNG Format
Png,
/// An Image in JPEG Format
Jpeg,
/// An Image in GIF Format
Gif,
/// An Image in WEBP Format
WebP,
/// An Image in general PNM Format
Pnm,
/// An Image in TIFF Format
Tiff,
/// An Image in TGA Format
Tga,
/// An Image in DDS Format
Dds,
/// An Image in BMP Format
Bmp,
/// An Image in ICO Format
Ico,
/// An Image in Radiance HDR Format
Hdr,
/// An Image in OpenEXR Format
OpenExr,
/// An Image in farbfeld Format
Farbfeld,
/// An Image in AVIF format.
Avif,
}
impl ImageFormat {
/// Return the image format specified by a path's file extension.
///
/// # Example
///
/// ```
/// use image::ImageFormat;
///
/// let format = ImageFormat::from_extension("jpg");
/// assert_eq!(format, Some(ImageFormat::Jpeg));
/// ```
#[inline]
pub fn from_extension<S>(ext: S) -> Option<Self>
where
S: AsRef<OsStr>,
{
// thin wrapper function to strip generics
fn inner(ext: &OsStr) -> Option<ImageFormat> {
let ext = ext.to_str()?.to_ascii_lowercase();
Some(match ext.as_str() {
"avif" => ImageFormat::Avif,
"jpg" | "jpeg" => ImageFormat::Jpeg,
"png" => ImageFormat::Png,
"gif" => ImageFormat::Gif,
"webp" => ImageFormat::WebP,
"tif" | "tiff" => ImageFormat::Tiff,
"tga" => ImageFormat::Tga,
"dds" => ImageFormat::Dds,
"bmp" => ImageFormat::Bmp,
"ico" => ImageFormat::Ico,
"hdr" => ImageFormat::Hdr,
"exr" => ImageFormat::OpenExr,
"pbm" | "pam" | "ppm" | "pgm" => ImageFormat::Pnm,
"ff" | "farbfeld" => ImageFormat::Farbfeld,
_ => return None,
})
}
inner(ext.as_ref())
}
/// Return the image format specified by the path's file extension.
///
/// # Example
///
/// ```
/// use image::ImageFormat;
///
/// let format = ImageFormat::from_path("images/ferris.png")?;
/// assert_eq!(format, ImageFormat::Png);
///
/// # Ok::<(), image::error::ImageError>(())
/// ```
#[inline]
pub fn from_path<P>(path: P) -> ImageResult<Self>
where
P: AsRef<Path>,
{
// thin wrapper function to strip generics
fn inner(path: &Path) -> ImageResult<ImageFormat> {
let exact_ext = path.extension();
exact_ext
.and_then(ImageFormat::from_extension)
.ok_or_else(|| {
let format_hint = match exact_ext {
None => ImageFormatHint::Unknown,
Some(os) => ImageFormatHint::PathExtension(os.into()),
};
ImageError::Unsupported(format_hint.into())
})
}
inner(path.as_ref())
}
/// Return the image format specified by a MIME type.
///
/// # Example
///
/// ```
/// use image::ImageFormat;
///
/// let format = ImageFormat::from_mime_type("image/png").unwrap();
/// assert_eq!(format, ImageFormat::Png);
/// ```
pub fn from_mime_type<M>(mime_type: M) -> Option<Self>
where
M: AsRef<str>,
{
match mime_type.as_ref() {
"image/avif" => Some(ImageFormat::Avif),
"image/jpeg" => Some(ImageFormat::Jpeg),
"image/png" => Some(ImageFormat::Png),
"image/gif" => Some(ImageFormat::Gif),
"image/webp" => Some(ImageFormat::WebP),
"image/tiff" => Some(ImageFormat::Tiff),
"image/x-targa" | "image/x-tga" => Some(ImageFormat::Tga),
"image/vnd-ms.dds" => Some(ImageFormat::Dds),
"image/bmp" => Some(ImageFormat::Bmp),
"image/x-icon" => Some(ImageFormat::Ico),
"image/vnd.radiance" => Some(ImageFormat::Hdr),
"image/x-exr" => Some(ImageFormat::OpenExr),
"image/x-portable-bitmap"
| "image/x-portable-graymap"
| "image/x-portable-pixmap"
| "image/x-portable-anymap" => Some(ImageFormat::Pnm),
_ => None,
}
}
/// Return if the ImageFormat can be decoded by the lib.
#[inline]
pub fn can_read(&self) -> bool {
// Needs to be updated once a new variant's decoder is added to free_functions.rs::load
match self {
ImageFormat::Png => true,
ImageFormat::Gif => true,
ImageFormat::Jpeg => true,
ImageFormat::WebP => true,
ImageFormat::Tiff => true,
ImageFormat::Tga => true,
ImageFormat::Dds => false,
ImageFormat::Bmp => true,
ImageFormat::Ico => true,
ImageFormat::Hdr => true,
ImageFormat::OpenExr => true,
ImageFormat::Pnm => true,
ImageFormat::Farbfeld => true,
ImageFormat::Avif => true,
}
}
/// Return if the ImageFormat can be encoded by the lib.
#[inline]
pub fn can_write(&self) -> bool {
// Needs to be updated once a new variant's encoder is added to free_functions.rs::save_buffer_with_format_impl
match self {
ImageFormat::Gif => true,
ImageFormat::Ico => true,
ImageFormat::Jpeg => true,
ImageFormat::Png => true,
ImageFormat::Bmp => true,
ImageFormat::Tiff => true,
ImageFormat::Tga => true,
ImageFormat::Pnm => true,
ImageFormat::Farbfeld => true,
ImageFormat::Avif => true,
ImageFormat::WebP => true,
ImageFormat::Hdr => false,
ImageFormat::OpenExr => true,
ImageFormat::Dds => false,
}
}
/// Return a list of applicable extensions for this format.
///
/// All currently recognized image formats specify at least on extension but for future
/// compatibility you should not rely on this fact. The list may be empty if the format has no
/// recognized file representation, for example in case it is used as a purely transient memory
/// format.
///
/// The method name `extensions` remains reserved for introducing another method in the future
/// that yields a slice of `OsStr` which is blocked by several features of const evaluation.
pub fn extensions_str(self) -> &'static [&'static str] {
match self {
ImageFormat::Png => &["png"],
ImageFormat::Jpeg => &["jpg", "jpeg"],
ImageFormat::Gif => &["gif"],
ImageFormat::WebP => &["webp"],
ImageFormat::Pnm => &["pbm", "pam", "ppm", "pgm"],
ImageFormat::Tiff => &["tiff", "tif"],
ImageFormat::Tga => &["tga"],
ImageFormat::Dds => &["dds"],
ImageFormat::Bmp => &["bmp"],
ImageFormat::Ico => &["ico"],
ImageFormat::Hdr => &["hdr"],
ImageFormat::OpenExr => &["exr"],
ImageFormat::Farbfeld => &["ff"],
// According to: https://aomediacodec.github.io/av1-avif/#mime-registration
ImageFormat::Avif => &["avif"],
}
}
}
/// An enumeration of supported image formats for encoding.
#[derive(Clone, PartialEq, Eq, Debug)]
#[non_exhaustive]
pub enum ImageOutputFormat {
#[cfg(feature = "png")]
/// An Image in PNG Format
Png,
#[cfg(feature = "jpeg")]
/// An Image in JPEG Format with specified quality
Jpeg(u8),
#[cfg(feature = "pnm")]
/// An Image in one of the PNM Formats
Pnm(PnmSubtype),
#[cfg(feature = "gif")]
/// An Image in GIF Format
Gif,
#[cfg(feature = "ico")]
/// An Image in ICO Format
Ico,
#[cfg(feature = "bmp")]
/// An Image in BMP Format
Bmp,
#[cfg(feature = "farbfeld")]
/// An Image in farbfeld Format
Farbfeld,
#[cfg(feature = "tga")]
/// An Image in TGA Format
Tga,
#[cfg(feature = "exr")]
/// An Image in OpenEXR Format
OpenExr,
#[cfg(feature = "tiff")]
/// An Image in TIFF Format
Tiff,
#[cfg(feature = "avif-encoder")]
/// An image in AVIF Format
Avif,
#[cfg(feature = "webp-encoder")]
/// An image in WebP Format.
WebP,
/// A value for signalling an error: An unsupported format was requested
// Note: When TryFrom is stabilized, this value should not be needed, and
// a TryInto<ImageOutputFormat> should be used instead of an Into<ImageOutputFormat>.
Unsupported(String),
}
impl From<ImageFormat> for ImageOutputFormat {
fn from(fmt: ImageFormat) -> Self {
match fmt {
#[cfg(feature = "png")]
ImageFormat::Png => ImageOutputFormat::Png,
#[cfg(feature = "jpeg")]
ImageFormat::Jpeg => ImageOutputFormat::Jpeg(75),
#[cfg(feature = "pnm")]
ImageFormat::Pnm => ImageOutputFormat::Pnm(PnmSubtype::ArbitraryMap),
#[cfg(feature = "gif")]
ImageFormat::Gif => ImageOutputFormat::Gif,
#[cfg(feature = "ico")]
ImageFormat::Ico => ImageOutputFormat::Ico,
#[cfg(feature = "bmp")]
ImageFormat::Bmp => ImageOutputFormat::Bmp,
#[cfg(feature = "farbfeld")]
ImageFormat::Farbfeld => ImageOutputFormat::Farbfeld,
#[cfg(feature = "tga")]
ImageFormat::Tga => ImageOutputFormat::Tga,
#[cfg(feature = "exr")]
ImageFormat::OpenExr => ImageOutputFormat::OpenExr,
#[cfg(feature = "tiff")]
ImageFormat::Tiff => ImageOutputFormat::Tiff,
#[cfg(feature = "avif-encoder")]
ImageFormat::Avif => ImageOutputFormat::Avif,
#[cfg(feature = "webp-encoder")]
ImageFormat::WebP => ImageOutputFormat::WebP,
f => ImageOutputFormat::Unsupported(format!("{:?}", f)),
}
}
}
// This struct manages buffering associated with implementing `Read` and `Seek` on decoders that can
// must decode ranges of bytes at a time.
#[allow(dead_code)]
// When no image formats that use it are enabled
pub(crate) struct ImageReadBuffer {
scanline_bytes: usize,
buffer: Vec<u8>,
consumed: usize,
total_bytes: u64,
offset: u64,
}
impl ImageReadBuffer {
/// Create a new ImageReadBuffer.
///
/// Panics if scanline_bytes doesn't fit into a usize, because that would mean reading anything
/// from the image would take more RAM than the entire virtual address space. In other words,
/// actually using this struct would instantly OOM so just get it out of the way now.
#[allow(dead_code)]
// When no image formats that use it are enabled
pub(crate) fn new(scanline_bytes: u64, total_bytes: u64) -> Self {
Self {
scanline_bytes: usize::try_from(scanline_bytes).unwrap(),
buffer: Vec::new(),
consumed: 0,
total_bytes,
offset: 0,
}
}
#[allow(dead_code)]
// When no image formats that use it are enabled
pub(crate) fn read<F>(&mut self, buf: &mut [u8], mut read_scanline: F) -> io::Result<usize>
where
F: FnMut(&mut [u8]) -> io::Result<usize>,
{
if self.buffer.len() == self.consumed {
if self.offset == self.total_bytes {
return Ok(0);
} else if buf.len() >= self.scanline_bytes {
// If there is nothing buffered and the user requested a full scanline worth of
// data, skip buffering.
let bytes_read = read_scanline(&mut buf[..self.scanline_bytes])?;
self.offset += u64::try_from(bytes_read).unwrap();
return Ok(bytes_read);
} else {
// Lazily allocate buffer the first time that read is called with a buffer smaller
// than the scanline size.
if self.buffer.is_empty() {
self.buffer.resize(self.scanline_bytes, 0);
}
self.consumed = 0;
let bytes_read = read_scanline(&mut self.buffer[..])?;
self.buffer.resize(bytes_read, 0);
self.offset += u64::try_from(bytes_read).unwrap();
assert!(bytes_read == self.scanline_bytes || self.offset == self.total_bytes);
}
}
// Finally, copy bytes into output buffer.
let bytes_buffered = self.buffer.len() - self.consumed;
if bytes_buffered > buf.len() {
buf.copy_from_slice(&self.buffer[self.consumed..][..buf.len()]);
self.consumed += buf.len();
Ok(buf.len())
} else {
buf[..bytes_buffered].copy_from_slice(&self.buffer[self.consumed..][..bytes_buffered]);
self.consumed = self.buffer.len();
Ok(bytes_buffered)
}
}
}
/// Decodes a specific region of the image, represented by the rectangle
/// starting from ```x``` and ```y``` and having ```length``` and ```width```
#[allow(dead_code)]
// When no image formats that use it are enabled
pub(crate) fn load_rect<'a, D, F, F1, F2, E>(
x: u32,
y: u32,
width: u32,
height: u32,
buf: &mut [u8],
progress_callback: F,
decoder: &mut D,
mut seek_scanline: F1,
mut read_scanline: F2,
) -> ImageResult<()>
where
D: ImageDecoder<'a>,
F: Fn(Progress),
F1: FnMut(&mut D, u64) -> io::Result<()>,
F2: FnMut(&mut D, &mut [u8]) -> Result<(), E>,
ImageError: From<E>,
{
let (x, y, width, height) = (
u64::from(x),
u64::from(y),
u64::from(width),
u64::from(height),
);
let dimensions = decoder.dimensions();
let bytes_per_pixel = u64::from(decoder.color_type().bytes_per_pixel());
let row_bytes = bytes_per_pixel * u64::from(dimensions.0);
let scanline_bytes = decoder.scanline_bytes();
let total_bytes = width * height * bytes_per_pixel;
if buf.len() < usize::try_from(total_bytes).unwrap_or(usize::max_value()) {
panic!(
"output buffer too short\n expected `{}`, provided `{}`",
total_bytes,
buf.len()
);
}
let mut bytes_read = 0u64;
let mut current_scanline = 0;
let mut tmp = Vec::new();
let mut tmp_scanline = None;
{
// Read a range of the image starting from byte number `start` and continuing until byte
// number `end`. Updates `current_scanline` and `bytes_read` appropriately.
let mut read_image_range = |mut start: u64, end: u64| -> ImageResult<()> {
// If the first scanline we need is already stored in the temporary buffer, then handle
// it first.
let target_scanline = start / scanline_bytes;
if tmp_scanline == Some(target_scanline) {
let position = target_scanline * scanline_bytes;
let offset = start.saturating_sub(position);
let len = (end - start)
.min(scanline_bytes - offset)
.min(end - position);
buf[(bytes_read as usize)..][..len as usize]
.copy_from_slice(&tmp[offset as usize..][..len as usize]);
bytes_read += len;
start += len;
progress_callback(Progress {
current: bytes_read,
total: total_bytes,
});
if start == end {
return Ok(());
}
}
let target_scanline = start / scanline_bytes;
if target_scanline != current_scanline {
seek_scanline(decoder, target_scanline)?;
current_scanline = target_scanline;
}
let mut position = current_scanline * scanline_bytes;
while position < end {
if position >= start && end - position >= scanline_bytes {
read_scanline(
decoder,
&mut buf[(bytes_read as usize)..][..(scanline_bytes as usize)],
)?;
bytes_read += scanline_bytes;
} else {
tmp.resize(scanline_bytes as usize, 0u8);
read_scanline(decoder, &mut tmp)?;
tmp_scanline = Some(current_scanline);
let offset = start.saturating_sub(position);
let len = (end - start)
.min(scanline_bytes - offset)
.min(end - position);
buf[(bytes_read as usize)..][..len as usize]
.copy_from_slice(&tmp[offset as usize..][..len as usize]);
bytes_read += len;
}
current_scanline += 1;
position += scanline_bytes;
progress_callback(Progress {
current: bytes_read,
total: total_bytes,
});
}
Ok(())
};
if x + width > u64::from(dimensions.0)
|| y + height > u64::from(dimensions.1)
|| width == 0
|| height == 0
{
return Err(ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::DimensionMismatch,
)));
}
if scanline_bytes > usize::max_value() as u64 {
return Err(ImageError::Limits(LimitError::from_kind(
LimitErrorKind::InsufficientMemory,
)));
}
progress_callback(Progress {
current: 0,
total: total_bytes,
});
if x == 0 && width == u64::from(dimensions.0) {
let start = x * bytes_per_pixel + y * row_bytes;
let end = (x + width) * bytes_per_pixel + (y + height - 1) * row_bytes;
read_image_range(start, end)?;
} else {
for row in y..(y + height) {
let start = x * bytes_per_pixel + row * row_bytes;
let end = (x + width) * bytes_per_pixel + row * row_bytes;
read_image_range(start, end)?;
}
}
}
// Seek back to the start
Ok(seek_scanline(decoder, 0)?)
}
/// Reads all of the bytes of a decoder into a Vec<T>. No particular alignment
/// of the output buffer is guaranteed.
///
/// Panics if there isn't enough memory to decode the image.
pub(crate) fn decoder_to_vec<'a, T>(decoder: impl ImageDecoder<'a>) -> ImageResult<Vec<T>>
where
T: crate::traits::Primitive + bytemuck::Pod,
{
let total_bytes = usize::try_from(decoder.total_bytes());
if total_bytes.is_err() || total_bytes.unwrap() > isize::max_value() as usize {
return Err(ImageError::Limits(LimitError::from_kind(
LimitErrorKind::InsufficientMemory,
)));
}
let mut buf = vec![num_traits::Zero::zero(); total_bytes.unwrap() / std::mem::size_of::<T>()];
decoder.read_image(bytemuck::cast_slice_mut(buf.as_mut_slice()))?;
Ok(buf)
}
/// Represents the progress of an image operation.
///
/// Note that this is not necessarily accurate and no change to the values passed to the progress
/// function during decoding will be considered breaking. A decoder could in theory report the
/// progress `(0, 0)` if progress is unknown, without violating the interface contract of the type.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct Progress {
current: u64,
total: u64,
}
impl Progress {
/// Create Progress. Result in invalid progress if you provide a greater `current` than `total`.
pub(crate) fn new(current: u64, total: u64) -> Self {
Self { current, total }
}
/// A measure of completed decoding.
pub fn current(self) -> u64 {
self.current
}
/// A measure of all necessary decoding work.
///
/// This is in general greater or equal than `current`.
pub fn total(self) -> u64 {
self.total
}
/// Calculate a measure for remaining decoding work.
pub fn remaining(self) -> u64 {
self.total.max(self.current) - self.current
}
}
/// The trait that all decoders implement
pub trait ImageDecoder<'a>: Sized {
/// The type of reader produced by `into_reader`.
type Reader: Read + 'a;
/// Returns a tuple containing the width and height of the image
fn dimensions(&self) -> (u32, u32);
/// Returns the color type of the image data produced by this decoder
fn color_type(&self) -> ColorType;
/// Returns the color type of the image file before decoding
fn original_color_type(&self) -> ExtendedColorType {
self.color_type().into()
}
/// Returns a reader that can be used to obtain the bytes of the image. For the best
/// performance, always try to read at least `scanline_bytes` from the reader at a time. Reading
/// fewer bytes will cause the reader to perform internal buffering.
fn into_reader(self) -> ImageResult<Self::Reader>;
/// Returns the total number of bytes in the decoded image.
///
/// This is the size of the buffer that must be passed to `read_image` or
/// `read_image_with_progress`. The returned value may exceed usize::MAX, in
/// which case it isn't actually possible to construct a buffer to decode all the image data
/// into. If, however, the size does not fit in a u64 then u64::MAX is returned.
fn total_bytes(&self) -> u64 {
let dimensions = self.dimensions();
let total_pixels = u64::from(dimensions.0) * u64::from(dimensions.1);
let bytes_per_pixel = u64::from(self.color_type().bytes_per_pixel());
total_pixels.saturating_mul(bytes_per_pixel)
}
/// Returns the minimum number of bytes that can be efficiently read from this decoder. This may
/// be as few as 1 or as many as `total_bytes()`.
fn scanline_bytes(&self) -> u64 {
self.total_bytes()
}
/// Returns all the bytes in the image.
///
/// This function takes a slice of bytes and writes the pixel data of the image into it.
/// Although not required, for certain color types callers may want to pass buffers which are
/// aligned to 2 or 4 byte boundaries to the slice can be cast to a [u16] or [u32]. To accommodate
/// such casts, the returned contents will always be in native endian.
///
/// # Panics
///
/// This function panics if buf.len() != self.total_bytes().
///
/// # Examples
///
/// ```no_build
/// use zerocopy::{AsBytes, FromBytes};
/// fn read_16bit_image(decoder: impl ImageDecoder) -> Vec<16> {
/// let mut buf: Vec<u16> = vec![0; decoder.total_bytes()/2];
/// decoder.read_image(buf.as_bytes());
/// buf
/// }
/// ```
fn read_image(self, buf: &mut [u8]) -> ImageResult<()> {
self.read_image_with_progress(buf, |_| {})
}
/// Same as `read_image` but periodically calls the provided callback to give updates on loading
/// progress.
fn read_image_with_progress<F: Fn(Progress)>(
self,
buf: &mut [u8],
progress_callback: F,
) -> ImageResult<()> {
assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
let total_bytes = self.total_bytes() as usize;
let scanline_bytes = self.scanline_bytes() as usize;
let target_read_size = if scanline_bytes < 4096 {
(4096 / scanline_bytes) * scanline_bytes
} else {
scanline_bytes
};
let mut reader = self.into_reader()?;
let mut bytes_read = 0;
while bytes_read < total_bytes {
let read_size = target_read_size.min(total_bytes - bytes_read);
reader.read_exact(&mut buf[bytes_read..][..read_size])?;
bytes_read += read_size;
progress_callback(Progress {
current: bytes_read as u64,
total: total_bytes as u64,
});
}
Ok(())
}
/// Set decoding limits for this decoder. See [`Limits`] for the different kinds of
/// limits that is possible to set.
///
/// Note to implementors: make sure you call [`Limits::check_support`] so that
/// decoding fails if any unsupported strict limits are set. Also make sure
/// you call [`Limits::check_dimensions`] to check the `max_image_width` and
/// `max_image_height` limits.
///
/// [`Limits`]: ./io/struct.Limits.html
/// [`Limits::check_support`]: ./io/struct.Limits.html#method.check_support
/// [`Limits::check_dimensions`]: ./io/struct.Limits.html#method.check_dimensions
fn set_limits(&mut self, limits: crate::io::Limits) -> ImageResult<()> {
limits.check_support(&crate::io::LimitSupport::default())?;
let (width, height) = self.dimensions();
limits.check_dimensions(width, height)?;
Ok(())
}
}
/// Specialized image decoding not be supported by all formats
pub trait ImageDecoderRect<'a>: ImageDecoder<'a> + Sized {
/// Decode a rectangular section of the image; see [`read_rect_with_progress()`](#fn.read_rect_with_progress).
fn read_rect(
&mut self,
x: u32,
y: u32,
width: u32,
height: u32,
buf: &mut [u8],
) -> ImageResult<()> {
self.read_rect_with_progress(x, y, width, height, buf, |_| {})
}
/// Decode a rectangular section of the image, periodically reporting progress.
///
/// The output buffer will be filled with fields specified by
/// [`ImageDecoder::color_type()`](trait.ImageDecoder.html#fn.color_type),
/// in that order, each field represented in native-endian.
///
/// The progress callback will be called at least once at the start and the end of decoding,
/// implementations are encouraged to call this more often,
/// with a frequency meaningful for display to the end-user.
///
/// This function will panic if the output buffer isn't at least
/// `color_type().bytes_per_pixel() * color_type().channel_count() * width * height` bytes long.
fn read_rect_with_progress<F: Fn(Progress)>(
&mut self,
x: u32,
y: u32,
width: u32,
height: u32,
buf: &mut [u8],
progress_callback: F,
) -> ImageResult<()>;
}
/// AnimationDecoder trait
pub trait AnimationDecoder<'a> {
/// Consume the decoder producing a series of frames.
fn into_frames(self) -> Frames<'a>;
}
/// The trait all encoders implement
pub trait ImageEncoder {
/// Writes all the bytes in an image to the encoder.
///
/// This function takes a slice of bytes of the pixel data of the image
/// and encodes them. Unlike particular format encoders inherent impl encode
/// methods where endianness is not specified, here image data bytes should
/// always be in native endian. The implementor will reorder the endianness
/// as necessary for the target encoding format.
///
/// See also `ImageDecoder::read_image` which reads byte buffers into
/// native endian.
fn write_image(
self,
buf: &[u8],
width: u32,
height: u32,
color_type: ColorType,
) -> ImageResult<()>;
}
/// Immutable pixel iterator
#[derive(Debug)]
pub struct Pixels<'a, I: ?Sized + 'a> {
image: &'a I,
x: u32,
y: u32,
width: u32,
height: u32,
}
impl<'a, I: GenericImageView> Iterator for Pixels<'a, I> {
type Item = (u32, u32, I::Pixel);
fn next(&mut self) -> Option<(u32, u32, I::Pixel)> {
if self.x >= self.width {
self.x = 0;
self.y += 1;
}
if self.y >= self.height {
None
} else {
let pixel = self.image.get_pixel(self.x, self.y);
let p = (self.x, self.y, pixel);
self.x += 1;
Some(p)
}
}
}
impl<I: ?Sized> Clone for Pixels<'_, I> {
fn clone(&self) -> Self {
Pixels { ..*self }
}
}
/// Trait to inspect an image.
///
/// ```
/// use image::{GenericImageView, Rgb, RgbImage};
///
/// let buffer = RgbImage::new(10, 10);
/// let image: &dyn GenericImageView<Pixel=Rgb<u8>> = &buffer;
/// ```
pub trait GenericImageView {
/// The type of pixel.
type Pixel: Pixel;
/// The width and height of this image.
fn dimensions(&self) -> (u32, u32);
/// The width of this image.
fn width(&self) -> u32 {
let (w, _) = self.dimensions();
w
}
/// The height of this image.
fn height(&self) -> u32 {
let (_, h) = self.dimensions();
h
}
/// The bounding rectangle of this image.
fn bounds(&self) -> (u32, u32, u32, u32);
/// Returns true if this x, y coordinate is contained inside the image.
fn in_bounds(&self, x: u32, y: u32) -> bool {
let (ix, iy, iw, ih) = self.bounds();
x >= ix && x < ix + iw && y >= iy && y < iy + ih
}
/// Returns the pixel located at (x, y). Indexed from top left.
///
/// # Panics
///
/// Panics if `(x, y)` is out of bounds.
fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel;
/// Returns the pixel located at (x, y). Indexed from top left.
///
/// This function can be implemented in a way that ignores bounds checking.
/// # Safety
///
/// The coordinates must be [`in_bounds`] of the image.
///
/// [`in_bounds`]: #method.in_bounds
unsafe fn unsafe_get_pixel(&self, x: u32, y: u32) -> Self::Pixel {
self.get_pixel(x, y)
}
/// Returns an Iterator over the pixels of this image.
/// The iterator yields the coordinates of each pixel
/// along with their value
fn pixels(&self) -> Pixels<Self>
where
Self: Sized,
{
let (width, height) = self.dimensions();
Pixels {
image: self,
x: 0,
y: 0,
width,
height,
}
}
/// Returns a subimage that is an immutable view into this image.
/// You can use [`GenericImage::sub_image`] if you need a mutable view instead.
/// The coordinates set the position of the top left corner of the view.
fn view(&self, x: u32, y: u32, width: u32, height: u32) -> SubImage<&Self>
where
Self: Sized,
{
assert!(x as u64 + width as u64 <= self.width() as u64);
assert!(y as u64 + height as u64 <= self.height() as u64);
SubImage::new(self, x, y, width, height)
}
}
/// A trait for manipulating images.
pub trait GenericImage: GenericImageView {
/// Gets a reference to the mutable pixel at location `(x, y)`. Indexed from top left.
///
/// # Panics
///
/// Panics if `(x, y)` is out of bounds.
///
/// Panics for dynamic images (this method is deprecated and will be removed).
///
/// ## Known issues
///
/// This requires the buffer to contain a unique set of continuous channels in the exact order
/// and byte representation that the pixel type requires. This is somewhat restrictive.
///
/// TODO: Maybe use some kind of entry API? this would allow pixel type conversion on the fly
/// while still doing only one array lookup:
///
/// ```ignore
/// let px = image.pixel_entry_at(x,y);
/// px.set_from_rgba(rgba)
/// ```
#[deprecated(since = "0.24.0", note = "Use `get_pixel` and `put_pixel` instead.")]
fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut Self::Pixel;
/// Put a pixel at location (x, y). Indexed from top left.
///
/// # Panics
///
/// Panics if `(x, y)` is out of bounds.
fn put_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel);
/// Puts a pixel at location (x, y). Indexed from top left.
///
/// This function can be implemented in a way that ignores bounds checking.
/// # Safety
///
/// The coordinates must be [`in_bounds`] of the image.
///
/// [`in_bounds`]: traits.GenericImageView.html#method.in_bounds
unsafe fn unsafe_put_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
self.put_pixel(x, y, pixel);
}
/// Put a pixel at location (x, y), taking into account alpha channels
#[deprecated(
since = "0.24.0",
note = "Use iterator `pixels_mut` to blend the pixels directly"
)]
fn blend_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel);
/// Copies all of the pixels from another image into this image.
///
/// The other image is copied with the top-left corner of the
/// other image placed at (x, y).
///
/// In order to copy only a piece of the other image, use [`GenericImageView::view`].
///
/// You can use [`FlatSamples`] to source pixels from an arbitrary regular raster of channel
/// values, for example from a foreign interface or a fixed image.
///
/// # Returns
/// Returns an error if the image is too large to be copied at the given position
///
/// [`GenericImageView::view`]: trait.GenericImageView.html#method.view
/// [`FlatSamples`]: flat/struct.FlatSamples.html
fn copy_from<O>(&mut self, other: &O, x: u32, y: u32) -> ImageResult<()>
where
O: GenericImageView<Pixel = Self::Pixel>,
{
// Do bounds checking here so we can use the non-bounds-checking
// functions to copy pixels.
if self.width() < other.width() + x || self.height() < other.height() + y {
return Err(ImageError::Parameter(ParameterError::from_kind(
ParameterErrorKind::DimensionMismatch,
)));
}
for k in 0..other.height() {
for i in 0..other.width() {
let p = other.get_pixel(i, k);
self.put_pixel(i + x, k + y, p);
}
}
Ok(())
}
/// Copies all of the pixels from one part of this image to another part of this image.
///
/// The destination rectangle of the copy is specified with the top-left corner placed at (x, y).
///
/// # Returns
/// `true` if the copy was successful, `false` if the image could not
/// be copied due to size constraints.
fn copy_within(&mut self, source: Rect, x: u32, y: u32) -> bool {
let Rect {
x: sx,
y: sy,
width,
height,
} = source;
let dx = x;
let dy = y;
assert!(sx < self.width() && dx < self.width());
assert!(sy < self.height() && dy < self.height());
if self.width() - dx.max(sx) < width || self.height() - dy.max(sy) < height {
return false;
}
// since `.rev()` creates a new dype we would either have to go with dynamic dispatch for the ranges
// or have quite a lot of code bloat. A macro gives us static dispatch with less visible bloat.
macro_rules! copy_within_impl_ {
($xiter:expr, $yiter:expr) => {
for y in $yiter {
let sy = sy + y;
let dy = dy + y;
for x in $xiter {
let sx = sx + x;
let dx = dx + x;
let pixel = self.get_pixel(sx, sy);
self.put_pixel(dx, dy, pixel);
}
}
};
}
// check how target and source rectangles relate to each other so we dont overwrite data before we copied it.
match (sx < dx, sy < dy) {
(true, true) => copy_within_impl_!((0..width).rev(), (0..height).rev()),
(true, false) => copy_within_impl_!((0..width).rev(), 0..height),
(false, true) => copy_within_impl_!(0..width, (0..height).rev()),
(false, false) => copy_within_impl_!(0..width, 0..height),
}
true
}
/// Returns a mutable subimage that is a view into this image.
/// If you want an immutable subimage instead, use [`GenericImageView::view`]
/// The coordinates set the position of the top left corner of the SubImage.
fn sub_image(&mut self, x: u32, y: u32, width: u32, height: u32) -> SubImage<&mut Self>
where
Self: Sized,
{
assert!(x as u64 + width as u64 <= self.width() as u64);
assert!(y as u64 + height as u64 <= self.height() as u64);
SubImage::new(self, x, y, width, height)
}
}
/// A View into another image
///
/// Instances of this struct can be created using:
/// - [`GenericImage::sub_image`] to create a mutable view,
/// - [`GenericImageView::view`] to create an immutable view,
/// - [`SubImage::new`] to instantiate the struct directly.
///
/// Note that this does _not_ implement `GenericImage`, but it dereferences to one which allows you
/// to use it as if it did. See [Design Considerations](#Design-Considerations) below for details.
///
/// # Design Considerations
///
/// For reasons relating to coherence, this is not itself a `GenericImage` or a `GenericImageView`.
/// In short, we want to reserve the ability of adding traits implemented for _all_ generic images
/// but in a different manner for `SubImage`. This may be required to ensure that stacking
/// sub-images comes at no double indirect cost.
///
/// If, ultimately, this is not needed then a directly implementation of `GenericImage` can and
/// will get added. This inconvenience may alternatively get resolved if Rust allows some forms of
/// specialization, which might make this trick unnecessary and thus also allows for a direct
/// implementation.
#[derive(Copy, Clone)]
pub struct SubImage<I> {
inner: SubImageInner<I>,
}
/// The inner type of `SubImage` that implements `GenericImage{,View}`.
///
/// This type is _nominally_ `pub` but it is not exported from the crate. It should be regarded as
/// an existential type in any case.
#[derive(Copy, Clone)]
pub struct SubImageInner<I> {
image: I,
xoffset: u32,
yoffset: u32,
xstride: u32,
ystride: u32,
}
/// Alias to access Pixel behind a reference
type DerefPixel<I> = <<I as Deref>::Target as GenericImageView>::Pixel;
/// Alias to access Subpixel behind a reference
type DerefSubpixel<I> = <DerefPixel<I> as Pixel>::Subpixel;
impl<I> SubImage<I> {
/// Construct a new subimage
/// The coordinates set the position of the top left corner of the SubImage.
pub fn new(image: I, x: u32, y: u32, width: u32, height: u32) -> SubImage<I> {
SubImage {
inner: SubImageInner {
image,
xoffset: x,
yoffset: y,
xstride: width,
ystride: height,
},
}
}
/// Change the coordinates of this subimage.
pub fn change_bounds(&mut self, x: u32, y: u32, width: u32, height: u32) {
self.inner.xoffset = x;
self.inner.yoffset = y;
self.inner.xstride = width;
self.inner.ystride = height;
}
/// Convert this subimage to an ImageBuffer
pub fn to_image(&self) -> ImageBuffer<DerefPixel<I>, Vec<DerefSubpixel<I>>>
where
I: Deref,
I::Target: GenericImageView + 'static,
{
let mut out = ImageBuffer::new(self.inner.xstride, self.inner.ystride);
let borrowed = self.inner.image.deref();
for y in 0..self.inner.ystride {
for x in 0..self.inner.xstride {
let p = borrowed.get_pixel(x + self.inner.xoffset, y + self.inner.yoffset);
out.put_pixel(x, y, p);
}
}
out
}
}
/// Methods for readable images.
impl<I> SubImage<I>
where
I: Deref,
I::Target: GenericImageView,
{
/// Create a sub-view of the image.
///
/// The coordinates given are relative to the current view on the underlying image.
///
/// Note that this method is preferred to the one from `GenericImageView`. This is accessible
/// with the explicit method call syntax but it should rarely be needed due to causing an
/// extra level of indirection.
///
/// ```
/// use image::{GenericImageView, RgbImage, SubImage};
/// let buffer = RgbImage::new(10, 10);
///
/// let subimage: SubImage<&RgbImage> = buffer.view(0, 0, 10, 10);
/// let subview: SubImage<&RgbImage> = subimage.view(0, 0, 10, 10);
///
/// // Less efficient and NOT &RgbImage
/// let _: SubImage<&_> = GenericImageView::view(&*subimage, 0, 0, 10, 10);
/// ```
pub fn view(&self, x: u32, y: u32, width: u32, height: u32) -> SubImage<&I::Target> {
use crate::GenericImageView as _;
assert!(x as u64 + width as u64 <= self.inner.width() as u64);
assert!(y as u64 + height as u64 <= self.inner.height() as u64);
let x = self.inner.xoffset + x;
let y = self.inner.yoffset + y;
SubImage::new(&*self.inner.image, x, y, width, height)
}
/// Get a reference to the underlying image.
pub fn inner(&self) -> &I::Target {
&self.inner.image
}
}
impl<I> SubImage<I>
where
I: DerefMut,
I::Target: GenericImage,
{
/// Create a mutable sub-view of the image.
///
/// The coordinates given are relative to the current view on the underlying image.
pub fn sub_image(
&mut self,
x: u32,
y: u32,
width: u32,
height: u32,
) -> SubImage<&mut I::Target> {
assert!(x as u64 + width as u64 <= self.inner.width() as u64);
assert!(y as u64 + height as u64 <= self.inner.height() as u64);
let x = self.inner.xoffset + x;
let y = self.inner.yoffset + y;
SubImage::new(&mut *self.inner.image, x, y, width, height)
}
/// Get a mutable reference to the underlying image.
pub fn inner_mut(&mut self) -> &mut I::Target {
&mut self.inner.image
}
}
impl<I> Deref for SubImage<I>
where
I: Deref,
{
type Target = SubImageInner<I>;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
impl<I> DerefMut for SubImage<I>
where
I: DerefMut,
{
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.inner
}
}
#[allow(deprecated)]
impl<I> GenericImageView for SubImageInner<I>
where
I: Deref,
I::Target: GenericImageView,
{
type Pixel = DerefPixel<I>;
fn dimensions(&self) -> (u32, u32) {
(self.xstride, self.ystride)
}
fn bounds(&self) -> (u32, u32, u32, u32) {
(self.xoffset, self.yoffset, self.xstride, self.ystride)
}
fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel {
self.image.get_pixel(x + self.xoffset, y + self.yoffset)
}
}
#[allow(deprecated)]
impl<I> GenericImage for SubImageInner<I>
where
I: DerefMut,
I::Target: GenericImage + Sized,
{
fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut Self::Pixel {
self.image.get_pixel_mut(x + self.xoffset, y + self.yoffset)
}
fn put_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
self.image
.put_pixel(x + self.xoffset, y + self.yoffset, pixel)
}
/// DEPRECATED: This method will be removed. Blend the pixel directly instead.
fn blend_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
self.image
.blend_pixel(x + self.xoffset, y + self.yoffset, pixel)
}
}
#[cfg(test)]
mod tests {
use std::io;
use std::path::Path;
use super::{
load_rect, ColorType, GenericImage, GenericImageView, ImageDecoder, ImageFormat,
ImageResult,
};
use crate::color::Rgba;
use crate::math::Rect;
use crate::{GrayImage, ImageBuffer};
#[test]
#[allow(deprecated)]
/// Test that alpha blending works as expected
fn test_image_alpha_blending() {
let mut target = ImageBuffer::new(1, 1);
target.put_pixel(0, 0, Rgba([255u8, 0, 0, 255]));
assert!(*target.get_pixel(0, 0) == Rgba([255, 0, 0, 255]));
target.blend_pixel(0, 0, Rgba([0, 255, 0, 255]));
assert!(*target.get_pixel(0, 0) == Rgba([0, 255, 0, 255]));
// Blending an alpha channel onto a solid background
target.blend_pixel(0, 0, Rgba([255, 0, 0, 127]));
assert!(*target.get_pixel(0, 0) == Rgba([127, 127, 0, 255]));
// Blending two alpha channels
target.put_pixel(0, 0, Rgba([0, 255, 0, 127]));
target.blend_pixel(0, 0, Rgba([255, 0, 0, 127]));
assert!(*target.get_pixel(0, 0) == Rgba([169, 85, 0, 190]));
}
#[test]
fn test_in_bounds() {
let mut target = ImageBuffer::new(2, 2);
target.put_pixel(0, 0, Rgba([255u8, 0, 0, 255]));
assert!(target.in_bounds(0, 0));
assert!(target.in_bounds(1, 0));
assert!(target.in_bounds(0, 1));
assert!(target.in_bounds(1, 1));
assert!(!target.in_bounds(2, 0));
assert!(!target.in_bounds(0, 2));
assert!(!target.in_bounds(2, 2));
}
#[test]
fn test_can_subimage_clone_nonmut() {
let mut source = ImageBuffer::new(3, 3);
source.put_pixel(1, 1, Rgba([255u8, 0, 0, 255]));
// A non-mutable copy of the source image
let source = source.clone();
// Clone a view into non-mutable to a separate buffer
let cloned = source.view(1, 1, 1, 1).to_image();
assert!(cloned.get_pixel(0, 0) == source.get_pixel(1, 1));
}
#[test]
fn test_can_nest_views() {
let mut source = ImageBuffer::from_pixel(3, 3, Rgba([255u8, 0, 0, 255]));
{
let mut sub1 = source.sub_image(0, 0, 2, 2);
let mut sub2 = sub1.sub_image(1, 1, 1, 1);
sub2.put_pixel(0, 0, Rgba([0, 0, 0, 0]));
}
assert_eq!(*source.get_pixel(1, 1), Rgba([0, 0, 0, 0]));
let view1 = source.view(0, 0, 2, 2);
assert_eq!(*source.get_pixel(1, 1), view1.get_pixel(1, 1));
let view2 = view1.view(1, 1, 1, 1);
assert_eq!(*source.get_pixel(1, 1), view2.get_pixel(0, 0));
}
#[test]
#[should_panic]
fn test_view_out_of_bounds() {
let source = ImageBuffer::from_pixel(3, 3, Rgba([255u8, 0, 0, 255]));
source.view(1, 1, 3, 3);
}
#[test]
#[should_panic]
fn test_view_coordinates_out_of_bounds() {
let source = ImageBuffer::from_pixel(3, 3, Rgba([255u8, 0, 0, 255]));
source.view(3, 3, 3, 3);
}
#[test]
#[should_panic]
fn test_view_width_out_of_bounds() {
let source = ImageBuffer::from_pixel(3, 3, Rgba([255u8, 0, 0, 255]));
source.view(1, 1, 3, 2);
}
#[test]
#[should_panic]
fn test_view_height_out_of_bounds() {
let source = ImageBuffer::from_pixel(3, 3, Rgba([255u8, 0, 0, 255]));
source.view(1, 1, 2, 3);
}
#[test]
#[should_panic]
fn test_view_x_out_of_bounds() {
let source = ImageBuffer::from_pixel(3, 3, Rgba([255u8, 0, 0, 255]));
source.view(3, 1, 3, 3);
}
#[test]
#[should_panic]
fn test_view_y_out_of_bounds() {
let source = ImageBuffer::from_pixel(3, 3, Rgba([255u8, 0, 0, 255]));
source.view(1, 3, 3, 3);
}
#[test]
fn test_view_in_bounds() {
let source = ImageBuffer::from_pixel(3, 3, Rgba([255u8, 0, 0, 255]));
source.view(0, 0, 3, 3);
source.view(1, 1, 2, 2);
source.view(2, 2, 0, 0);
}
#[test]
fn test_copy_sub_image() {
let source = ImageBuffer::from_pixel(3, 3, Rgba([255u8, 0, 0, 255]));
let view = source.view(0, 0, 3, 3);
let mut views = Vec::new();
views.push(view);
view.to_image();
}
#[test]
fn test_load_rect() {
struct MockDecoder {
scanline_number: u64,
scanline_bytes: u64,
}
impl<'a> ImageDecoder<'a> for MockDecoder {
type Reader = Box<dyn io::Read>;
fn dimensions(&self) -> (u32, u32) {
(5, 5)
}
fn color_type(&self) -> ColorType {
ColorType::L8
}
fn into_reader(self) -> ImageResult<Self::Reader> {
unimplemented!()
}
fn scanline_bytes(&self) -> u64 {
self.scanline_bytes
}
}
const DATA: [u8; 25] = [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24,
];
fn seek_scanline(m: &mut MockDecoder, n: u64) -> io::Result<()> {
m.scanline_number = n;
Ok(())
}
fn read_scanline(m: &mut MockDecoder, buf: &mut [u8]) -> io::Result<()> {
let bytes_read = m.scanline_number * m.scanline_bytes;
if bytes_read >= 25 {
return Ok(());
}
let len = m.scanline_bytes.min(25 - bytes_read);
buf[..(len as usize)].copy_from_slice(&DATA[(bytes_read as usize)..][..(len as usize)]);
m.scanline_number += 1;
Ok(())
}
for scanline_bytes in 1..30 {
let mut output = [0u8; 26];
load_rect(
0,
0,
5,
5,
&mut output,
|_| {},
&mut MockDecoder {
scanline_number: 0,
scanline_bytes,
},
seek_scanline,
read_scanline,
)
.unwrap();
assert_eq!(output[0..25], DATA);
assert_eq!(output[25], 0);
output = [0u8; 26];
load_rect(
3,
2,
1,
1,
&mut output,
|_| {},
&mut MockDecoder {
scanline_number: 0,
scanline_bytes,
},
seek_scanline,
read_scanline,
)
.unwrap();
assert_eq!(output[0..2], [13, 0]);
output = [0u8; 26];
load_rect(
3,
2,
2,
2,
&mut output,
|_| {},
&mut MockDecoder {
scanline_number: 0,
scanline_bytes,
},
seek_scanline,
read_scanline,
)
.unwrap();
assert_eq!(output[0..5], [13, 14, 18, 19, 0]);
output = [0u8; 26];
load_rect(
1,
1,
2,
4,
&mut output,
|_| {},
&mut MockDecoder {
scanline_number: 0,
scanline_bytes,
},
seek_scanline,
read_scanline,
)
.unwrap();
assert_eq!(output[0..9], [6, 7, 11, 12, 16, 17, 21, 22, 0]);
}
}
#[test]
fn test_load_rect_single_scanline() {
const DATA: [u8; 25] = [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24,
];
struct MockDecoder;
impl<'a> ImageDecoder<'a> for MockDecoder {
type Reader = Box<dyn io::Read>;
fn dimensions(&self) -> (u32, u32) {
(5, 5)
}
fn color_type(&self) -> ColorType {
ColorType::L8
}
fn into_reader(self) -> ImageResult<Self::Reader> {
unimplemented!()
}
fn scanline_bytes(&self) -> u64 {
25
}
}
// Ensure that seek scanline is called only once.
let mut seeks = 0;
let seek_scanline = |_d: &mut MockDecoder, n: u64| -> io::Result<()> {
seeks += 1;
assert_eq!(n, 0);
assert_eq!(seeks, 1);
Ok(())
};
fn read_scanline(_m: &mut MockDecoder, buf: &mut [u8]) -> io::Result<()> {
buf.copy_from_slice(&DATA);
Ok(())
}
let mut output = [0; 26];
load_rect(
1,
1,
2,
4,
&mut output,
|_| {},
&mut MockDecoder,
seek_scanline,
read_scanline,
)
.unwrap();
assert_eq!(output[0..9], [6, 7, 11, 12, 16, 17, 21, 22, 0]);
}
#[test]
fn test_image_format_from_path() {
fn from_path(s: &str) -> ImageResult<ImageFormat> {
ImageFormat::from_path(Path::new(s))
}
assert_eq!(from_path("./a.jpg").unwrap(), ImageFormat::Jpeg);
assert_eq!(from_path("./a.jpeg").unwrap(), ImageFormat::Jpeg);
assert_eq!(from_path("./a.JPEG").unwrap(), ImageFormat::Jpeg);
assert_eq!(from_path("./a.pNg").unwrap(), ImageFormat::Png);
assert_eq!(from_path("./a.gif").unwrap(), ImageFormat::Gif);
assert_eq!(from_path("./a.webp").unwrap(), ImageFormat::WebP);
assert_eq!(from_path("./a.tiFF").unwrap(), ImageFormat::Tiff);
assert_eq!(from_path("./a.tif").unwrap(), ImageFormat::Tiff);
assert_eq!(from_path("./a.tga").unwrap(), ImageFormat::Tga);
assert_eq!(from_path("./a.dds").unwrap(), ImageFormat::Dds);
assert_eq!(from_path("./a.bmp").unwrap(), ImageFormat::Bmp);
assert_eq!(from_path("./a.Ico").unwrap(), ImageFormat::Ico);
assert_eq!(from_path("./a.hdr").unwrap(), ImageFormat::Hdr);
assert_eq!(from_path("./a.exr").unwrap(), ImageFormat::OpenExr);
assert_eq!(from_path("./a.pbm").unwrap(), ImageFormat::Pnm);
assert_eq!(from_path("./a.pAM").unwrap(), ImageFormat::Pnm);
assert_eq!(from_path("./a.Ppm").unwrap(), ImageFormat::Pnm);
assert_eq!(from_path("./a.pgm").unwrap(), ImageFormat::Pnm);
assert_eq!(from_path("./a.AViF").unwrap(), ImageFormat::Avif);
assert!(from_path("./a.txt").is_err());
assert!(from_path("./a").is_err());
}
#[test]
fn test_generic_image_copy_within_oob() {
let mut image: GrayImage = ImageBuffer::from_raw(4, 4, vec![0u8; 16]).unwrap();
assert!(!image.sub_image(0, 0, 4, 4).copy_within(
Rect {
x: 0,
y: 0,
width: 5,
height: 4
},
0,
0
));
assert!(!image.sub_image(0, 0, 4, 4).copy_within(
Rect {
x: 0,
y: 0,
width: 4,
height: 5
},
0,
0
));
assert!(!image.sub_image(0, 0, 4, 4).copy_within(
Rect {
x: 1,
y: 0,
width: 4,
height: 4
},
0,
0
));
assert!(!image.sub_image(0, 0, 4, 4).copy_within(
Rect {
x: 0,
y: 0,
width: 4,
height: 4
},
1,
0
));
assert!(!image.sub_image(0, 0, 4, 4).copy_within(
Rect {
x: 0,
y: 1,
width: 4,
height: 4
},
0,
0
));
assert!(!image.sub_image(0, 0, 4, 4).copy_within(
Rect {
x: 0,
y: 0,
width: 4,
height: 4
},
0,
1
));
assert!(!image.sub_image(0, 0, 4, 4).copy_within(
Rect {
x: 1,
y: 1,
width: 4,
height: 4
},
0,
0
));
}
#[test]
fn test_generic_image_copy_within_tl() {
let data = &[
00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15,
];
let expected = [
00, 01, 02, 03, 04, 00, 01, 02, 08, 04, 05, 06, 12, 08, 09, 10,
];
let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap();
assert!(image.sub_image(0, 0, 4, 4).copy_within(
Rect {
x: 0,
y: 0,
width: 3,
height: 3
},
1,
1
));
assert_eq!(&image.into_raw(), &expected);
}
#[test]
fn test_generic_image_copy_within_tr() {
let data = &[
00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15,
];
let expected = [
00, 01, 02, 03, 01, 02, 03, 07, 05, 06, 07, 11, 09, 10, 11, 15,
];
let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap();
assert!(image.sub_image(0, 0, 4, 4).copy_within(
Rect {
x: 1,
y: 0,
width: 3,
height: 3
},
0,
1
));
assert_eq!(&image.into_raw(), &expected);
}
#[test]
fn test_generic_image_copy_within_bl() {
let data = &[
00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15,
];
let expected = [
00, 04, 05, 06, 04, 08, 09, 10, 08, 12, 13, 14, 12, 13, 14, 15,
];
let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap();
assert!(image.sub_image(0, 0, 4, 4).copy_within(
Rect {
x: 0,
y: 1,
width: 3,
height: 3
},
1,
0
));
assert_eq!(&image.into_raw(), &expected);
}
#[test]
fn test_generic_image_copy_within_br() {
let data = &[
00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15,
];
let expected = [
05, 06, 07, 03, 09, 10, 11, 07, 13, 14, 15, 11, 12, 13, 14, 15,
];
let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap();
assert!(image.sub_image(0, 0, 4, 4).copy_within(
Rect {
x: 1,
y: 1,
width: 3,
height: 3
},
0,
0
));
assert_eq!(&image.into_raw(), &expected);
}
#[test]
fn image_formats_are_recognized() {
use ImageFormat::*;
const ALL_FORMATS: &'static [ImageFormat] = &[
Avif, Png, Jpeg, Gif, WebP, Pnm, Tiff, Tga, Dds, Bmp, Ico, Hdr, Farbfeld, OpenExr,
];
for &format in ALL_FORMATS {
let mut file = Path::new("file.nothing").to_owned();
for ext in format.extensions_str() {
assert!(file.set_extension(ext));
match ImageFormat::from_path(&file) {
Err(_) => panic!("Path {} not recognized as {:?}", file.display(), format),
Ok(result) => assert_eq!(format, result),
}
}
}
}
#[test]
fn total_bytes_overflow() {
struct D;
impl<'a> ImageDecoder<'a> for D {
type Reader = std::io::Cursor<Vec<u8>>;
fn color_type(&self) -> ColorType {
ColorType::Rgb8
}
fn dimensions(&self) -> (u32, u32) {
(0xffffffff, 0xffffffff)
}
fn into_reader(self) -> ImageResult<Self::Reader> {
unreachable!()
}
}
assert_eq!(D.total_bytes(), u64::max_value());
let v: ImageResult<Vec<u8>> = super::decoder_to_vec(D);
assert!(v.is_err());
}
}