更新libclamav库1.0.0版本
This commit is contained in:
144
clamav/libclamav_rust/.cargo/vendor/half/src/bfloat/convert.rs
vendored
Normal file
144
clamav/libclamav_rust/.cargo/vendor/half/src/bfloat/convert.rs
vendored
Normal file
@@ -0,0 +1,144 @@
|
||||
use crate::leading_zeros::leading_zeros_u16;
|
||||
use core::mem;
|
||||
|
||||
pub(crate) const fn f32_to_bf16(value: f32) -> u16 {
|
||||
// TODO: Replace mem::transmute with to_bits() once to_bits is const-stabilized
|
||||
// Convert to raw bytes
|
||||
let x: u32 = unsafe { mem::transmute(value) };
|
||||
|
||||
// check for NaN
|
||||
if x & 0x7FFF_FFFFu32 > 0x7F80_0000u32 {
|
||||
// Keep high part of current mantissa but also set most significiant mantissa bit
|
||||
return ((x >> 16) | 0x0040u32) as u16;
|
||||
}
|
||||
|
||||
// round and shift
|
||||
let round_bit = 0x0000_8000u32;
|
||||
if (x & round_bit) != 0 && (x & (3 * round_bit - 1)) != 0 {
|
||||
(x >> 16) as u16 + 1
|
||||
} else {
|
||||
(x >> 16) as u16
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) const fn f64_to_bf16(value: f64) -> u16 {
|
||||
// TODO: Replace mem::transmute with to_bits() once to_bits is const-stabilized
|
||||
// Convert to raw bytes, truncating the last 32-bits of mantissa; that precision will always
|
||||
// be lost on half-precision.
|
||||
let val: u64 = unsafe { mem::transmute(value) };
|
||||
let x = (val >> 32) as u32;
|
||||
|
||||
// Extract IEEE754 components
|
||||
let sign = x & 0x8000_0000u32;
|
||||
let exp = x & 0x7FF0_0000u32;
|
||||
let man = x & 0x000F_FFFFu32;
|
||||
|
||||
// Check for all exponent bits being set, which is Infinity or NaN
|
||||
if exp == 0x7FF0_0000u32 {
|
||||
// Set mantissa MSB for NaN (and also keep shifted mantissa bits).
|
||||
// We also have to check the last 32 bits.
|
||||
let nan_bit = if man == 0 && (val as u32 == 0) {
|
||||
0
|
||||
} else {
|
||||
0x0040u32
|
||||
};
|
||||
return ((sign >> 16) | 0x7F80u32 | nan_bit | (man >> 13)) as u16;
|
||||
}
|
||||
|
||||
// The number is normalized, start assembling half precision version
|
||||
let half_sign = sign >> 16;
|
||||
// Unbias the exponent, then bias for bfloat16 precision
|
||||
let unbiased_exp = ((exp >> 20) as i64) - 1023;
|
||||
let half_exp = unbiased_exp + 127;
|
||||
|
||||
// Check for exponent overflow, return +infinity
|
||||
if half_exp >= 0xFF {
|
||||
return (half_sign | 0x7F80u32) as u16;
|
||||
}
|
||||
|
||||
// Check for underflow
|
||||
if half_exp <= 0 {
|
||||
// Check mantissa for what we can do
|
||||
if 7 - half_exp > 21 {
|
||||
// No rounding possibility, so this is a full underflow, return signed zero
|
||||
return half_sign as u16;
|
||||
}
|
||||
// Don't forget about hidden leading mantissa bit when assembling mantissa
|
||||
let man = man | 0x0010_0000u32;
|
||||
let mut half_man = man >> (14 - half_exp);
|
||||
// Check for rounding
|
||||
let round_bit = 1 << (13 - half_exp);
|
||||
if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 {
|
||||
half_man += 1;
|
||||
}
|
||||
// No exponent for subnormals
|
||||
return (half_sign | half_man) as u16;
|
||||
}
|
||||
|
||||
// Rebias the exponent
|
||||
let half_exp = (half_exp as u32) << 7;
|
||||
let half_man = man >> 13;
|
||||
// Check for rounding
|
||||
let round_bit = 0x0000_1000u32;
|
||||
if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 {
|
||||
// Round it
|
||||
((half_sign | half_exp | half_man) + 1) as u16
|
||||
} else {
|
||||
(half_sign | half_exp | half_man) as u16
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) const fn bf16_to_f32(i: u16) -> f32 {
|
||||
// TODO: Replace mem::transmute with from_bits() once from_bits is const-stabilized
|
||||
// If NaN, keep current mantissa but also set most significiant mantissa bit
|
||||
if i & 0x7FFFu16 > 0x7F80u16 {
|
||||
unsafe { mem::transmute((i as u32 | 0x0040u32) << 16) }
|
||||
} else {
|
||||
unsafe { mem::transmute((i as u32) << 16) }
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) const fn bf16_to_f64(i: u16) -> f64 {
|
||||
// TODO: Replace mem::transmute with from_bits() once from_bits is const-stabilized
|
||||
// Check for signed zero
|
||||
if i & 0x7FFFu16 == 0 {
|
||||
return unsafe { mem::transmute((i as u64) << 48) };
|
||||
}
|
||||
|
||||
let half_sign = (i & 0x8000u16) as u64;
|
||||
let half_exp = (i & 0x7F80u16) as u64;
|
||||
let half_man = (i & 0x007Fu16) as u64;
|
||||
|
||||
// Check for an infinity or NaN when all exponent bits set
|
||||
if half_exp == 0x7F80u64 {
|
||||
// Check for signed infinity if mantissa is zero
|
||||
if half_man == 0 {
|
||||
return unsafe { mem::transmute((half_sign << 48) | 0x7FF0_0000_0000_0000u64) };
|
||||
} else {
|
||||
// NaN, keep current mantissa but also set most significiant mantissa bit
|
||||
return unsafe {
|
||||
mem::transmute((half_sign << 48) | 0x7FF8_0000_0000_0000u64 | (half_man << 45))
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate double-precision components with adjusted exponent
|
||||
let sign = half_sign << 48;
|
||||
// Unbias exponent
|
||||
let unbiased_exp = ((half_exp as i64) >> 7) - 127;
|
||||
|
||||
// Check for subnormals, which will be normalized by adjusting exponent
|
||||
if half_exp == 0 {
|
||||
// Calculate how much to adjust the exponent by
|
||||
let e = leading_zeros_u16(half_man as u16) - 9;
|
||||
|
||||
// Rebias and adjust exponent
|
||||
let exp = ((1023 - 127 - e) as u64) << 52;
|
||||
let man = (half_man << (46 + e)) & 0xF_FFFF_FFFF_FFFFu64;
|
||||
return unsafe { mem::transmute(sign | exp | man) };
|
||||
}
|
||||
// Rebias exponent for a normalized normal
|
||||
let exp = ((unbiased_exp + 1023) as u64) << 52;
|
||||
let man = (half_man & 0x007Fu64) << 45;
|
||||
unsafe { mem::transmute(sign | exp | man) }
|
||||
}
|
||||
Reference in New Issue
Block a user