更新libclamav库1.0.0版本

This commit is contained in:
2023-01-14 18:28:39 +08:00
parent b879ee0b2e
commit 45fe15f472
8531 changed files with 1222046 additions and 177272 deletions

View File

@@ -0,0 +1,178 @@
# A simple Python script to generate the code for odd-sized optimized DFTs
# The generated code is simply printed in the terminal.
# This is only intended for prime lengths, where the usual tricks can't be used.
# The generated code is O(n^2), but for short lengths this is still faster than fancier algorithms.
# Example, make a length 5 Dft:
# > python genbutterflies.py 5
# Output:
# let x14p = *buffer.get_unchecked(1) + *buffer.get_unchecked(4);
# let x14n = *buffer.get_unchecked(1) - *buffer.get_unchecked(4);
# let x23p = *buffer.get_unchecked(2) + *buffer.get_unchecked(3);
# let x23n = *buffer.get_unchecked(2) - *buffer.get_unchecked(3);
# let sum = *buffer.get_unchecked(0) + x14p + x23p;
# let b14re_a = buffer.get_unchecked(0).re + self.twiddle1.re*x14p.re + self.twiddle2.re*x23p.re;
# let b14re_b = self.twiddle1.im*x14n.im + self.twiddle2.im*x23n.im;
# let b23re_a = buffer.get_unchecked(0).re + self.twiddle2.re*x14p.re + self.twiddle1.re*x23p.re;
# let b23re_b = self.twiddle2.im*x14n.im + -self.twiddle1.im*x23n.im;
#
# let b14im_a = buffer.get_unchecked(0).im + self.twiddle1.re*x14p.im + self.twiddle2.re*x23p.im;
# let b14im_b = self.twiddle1.im*x14n.re + self.twiddle2.im*x23n.re;
# let b23im_a = buffer.get_unchecked(0).im + self.twiddle2.re*x14p.im + self.twiddle1.re*x23p.im;
# let b23im_b = self.twiddle2.im*x14n.re + -self.twiddle1.im*x23n.re;
#
# let out1re = b14re_a - b14re_b;
# let out1im = b14im_a + b14im_b;
# let out2re = b23re_a - b23re_b;
# let out2im = b23im_a + b23im_b;
# let out3re = b23re_a + b23re_b;
# let out3im = b23im_a - b23im_b;
# let out4re = b14re_a + b14re_b;
# let out4im = b14im_a - b14im_b;
# *buffer.get_unchecked_mut(0) = sum;
# *buffer.get_unchecked_mut(1) = Complex{ re: out1re, im: out1im };
# *buffer.get_unchecked_mut(2) = Complex{ re: out2re, im: out2im };
# *buffer.get_unchecked_mut(3) = Complex{ re: out3re, im: out3im };
# *buffer.get_unchecked_mut(4) = Complex{ re: out4re, im: out4im };
#
#
# This required the Butterfly5 to already exist, with twiddles defined like this:
# pub struct Butterfly5<T> {
# twiddle1: Complex<T>,
# twiddle2: Complex<T>,
# direction: FftDirection,
# }
#
# With twiddle values:
# twiddle1: Complex<T> = twiddles::single_twiddle(1, 5, direction);
# twiddle2: Complex<T> = twiddles::single_twiddle(2, 5, direction);
import sys
def make_shuffling_single_f64(len):
inputs = ", ".join([str(n) for n in range(len)])
print(f"let values = read_complex_to_array!(input, {{{inputs}}});")
print("")
print("let out = self.perform_fft_direct(values);")
print("")
print(f"write_complex_to_array!(out, output, {{{inputs}}});")
def make_shuffling_single_f32(len):
inputs = ", ".join([str(n) for n in range(len)])
print(f"let values = read_partial1_complex_to_array!(input, {{{inputs}}});")
print("")
print("let out = self.perform_parallel_fft_direct(values);")
print("")
print(f"write_partial_lo_complex_to_array!(out, output, {{{inputs}}});")
def make_shuffling_parallel_f32(len):
inputs = ", ".join([str(2*n) for n in range(len)])
outputs = ", ".join([str(n) for n in range(len)])
print(f"let input_packed = read_complex_to_array!(input, {{{inputs}}});")
print("")
print("let values = [")
for n in range(int(len/2)):
print(f" extract_lo_hi_f32(input_packed[{int(n)}], input_packed[{int(len/2 + n)}]),")
print(f" extract_hi_lo_f32(input_packed[{int(n)}], input_packed[{int(len/2 + n+1)}]),")
print(f" extract_lo_hi_f32(input_packed[{int(len/2)}], input_packed[{int(len-1)}]),")
print("];")
print("")
print("let out = self.perform_parallel_fft_direct(values);")
print("")
print("let out_packed = [")
for n in range(int(len/2)):
print(f" extract_lo_lo_f32(out[{int(2*n)}], out[{int(2*n+1)}]),")
print(f" extract_lo_hi_f32(out[{int(len-1)}], out[0]),")
for n in range(int(len/2)):
print(f" extract_hi_hi_f32(out[{int(2*n+1)}], out[{int(2*n+2)}]),")
print("];")
print("")
print(f"write_complex_to_array_strided!(out_packed, output, 2, {{{outputs}}});")
def make_butterfly(len, fft2func, calcfunc, mulfunc, rotatefunc):
halflen = int((fftlen+1)/2)
for n in range(1, halflen):
print(f"let [x{n}p{fftlen-n}, x{n}m{fftlen-n}] = {fft2func}(values[{n}], values[{fftlen-n}]);")
print("")
items = []
for m in range (1, halflen):
for n in range(1, halflen):
mn = (m*n)%fftlen
if mn > fftlen/2:
mn = fftlen-mn
print(f"let t_a{m}_{n} = {mulfunc}(self.twiddle{mn}re, x{n}p{fftlen-n});")
print("")
items = []
for m in range (1, halflen):
for n in range(1, halflen):
mn = (m*n)%fftlen
if mn > fftlen/2:
mn = fftlen-mn
print(f"let t_b{m}_{n} = {mulfunc}(self.twiddle{mn}im, x{n}m{fftlen-n});")
print("")
print("let x0 = values[0];")
for m in range(1, halflen):
items = ["x0"]
for n in range(1, halflen):
items.append(f"t_a{m}_{n}")
terms = " + ".join(items)
print(f'let t_a{m} = {calcfunc}({terms});')
print("")
for m in range(1, halflen):
terms = f"t_b{m}_1"
for n in range(2, halflen):
mn = (m*n)%fftlen
if mn > fftlen/2:
sign = " - "
else:
sign = " + "
terms = terms + sign + f"t_b{m}_{n}"
print(f'let t_b{m} = {calcfunc}({terms});')
print("")
for m in range(1, halflen):
print(f'let t_b{m}_rot = self.rotate.{rotatefunc}(t_b{m});')
print("")
items = ["x0"]
for n in range(1, halflen):
items.append(f"x{n}p{fftlen-n}")
terms = " + ".join(items)
print(f'let y0 = {calcfunc}({terms});')
for m in range(1, halflen):
print(f"let [y{m}, y{fftlen-m}] = {fft2func}(t_a{m}, t_b{m}_rot);")
items = []
for n in range(0, fftlen):
items.append(f"y{n}")
print(f'[{", ".join(items)}]')
if __name__ == "__main__":
fftlen = int(sys.argv[1])
print("\n\n--------------- f32 ---------------")
print("\n ----- perform_fft_contiguous -----")
make_shuffling_single_f32(fftlen)
print("\n ----- perform_parallel_fft_contiguous -----")
make_shuffling_parallel_f32(fftlen)
print("\n ----- perform_parallel_fft_direct -----")
make_butterfly(fftlen, "parallel_fft2_interleaved_f32", "calc_f32!", "_mm_mul_ps", "rotate_both")
print("\n\n--------------- f64 ---------------")
print("\n ----- perform_fft_contiguous -----")
make_shuffling_single_f64(fftlen)
print("\n ----- perform_parallel_fft_direct -----")
make_butterfly(fftlen, "solo_fft2_f64", "calc_f64!", "_mm_mul_pd", "rotate")

View File

@@ -0,0 +1,115 @@
# A simple Python script to generate the code for odd-sized optimized DFTs
# The generated code is simply printed in the terminal.
# This is only intended for prime lengths, where the usual tricks can't be used.
# The generated code is O(n^2), but for short lengths this is still faster than fancier algorithms.
# Example, make a length 5 Dft:
# > python genbutterflies.py 5
# Output:
# let x14p = *buffer.get_unchecked(1) + *buffer.get_unchecked(4);
# let x14n = *buffer.get_unchecked(1) - *buffer.get_unchecked(4);
# let x23p = *buffer.get_unchecked(2) + *buffer.get_unchecked(3);
# let x23n = *buffer.get_unchecked(2) - *buffer.get_unchecked(3);
# let sum = *buffer.get_unchecked(0) + x14p + x23p;
# let b14re_a = buffer.get_unchecked(0).re + self.twiddle1.re*x14p.re + self.twiddle2.re*x23p.re;
# let b14re_b = self.twiddle1.im*x14n.im + self.twiddle2.im*x23n.im;
# let b23re_a = buffer.get_unchecked(0).re + self.twiddle2.re*x14p.re + self.twiddle1.re*x23p.re;
# let b23re_b = self.twiddle2.im*x14n.im + -self.twiddle1.im*x23n.im;
#
# let b14im_a = buffer.get_unchecked(0).im + self.twiddle1.re*x14p.im + self.twiddle2.re*x23p.im;
# let b14im_b = self.twiddle1.im*x14n.re + self.twiddle2.im*x23n.re;
# let b23im_a = buffer.get_unchecked(0).im + self.twiddle2.re*x14p.im + self.twiddle1.re*x23p.im;
# let b23im_b = self.twiddle2.im*x14n.re + -self.twiddle1.im*x23n.re;
#
# let out1re = b14re_a - b14re_b;
# let out1im = b14im_a + b14im_b;
# let out2re = b23re_a - b23re_b;
# let out2im = b23im_a + b23im_b;
# let out3re = b23re_a + b23re_b;
# let out3im = b23im_a - b23im_b;
# let out4re = b14re_a + b14re_b;
# let out4im = b14im_a - b14im_b;
# *buffer.get_unchecked_mut(0) = sum;
# *buffer.get_unchecked_mut(1) = Complex{ re: out1re, im: out1im };
# *buffer.get_unchecked_mut(2) = Complex{ re: out2re, im: out2im };
# *buffer.get_unchecked_mut(3) = Complex{ re: out3re, im: out3im };
# *buffer.get_unchecked_mut(4) = Complex{ re: out4re, im: out4im };
#
#
# This required the Butterfly5 to already exist, with twiddles defined like this:
# pub struct Butterfly5<T> {
# twiddle1: Complex<T>,
# twiddle2: Complex<T>,
# direction: FftDirection,
# }
#
# With twiddle values:
# twiddle1: Complex<T> = twiddles::single_twiddle(1, 5, direction);
# twiddle2: Complex<T> = twiddles::single_twiddle(2, 5, direction);
import sys
len = int(sys.argv[1])
halflen = int((len+1)/2)
for n in range(1, halflen):
print(f"let x{n}{len-n}p = *buffer.get_unchecked({n}) + *buffer.get_unchecked({len-n});")
print(f"let x{n}{len-n}n = *buffer.get_unchecked({n}) - *buffer.get_unchecked({len-n});")
row = ["let sum = *buffer.get_unchecked(0)"]
for n in range(1, halflen):
row.append(f"x{n}{len-n}p")
print(" + ".join(row) + ";")
for n in range(1, halflen):
row = [f"let b{n}{len-n}re_a = buffer.get_unchecked(0).re"]
for m in range(1, halflen):
mn = (m*n)%len
if mn > len/2:
mn = len-mn
row.append(f"self.twiddle{mn}.re*x{m}{len-m}p.re")
print(" + ".join(row) + ";")
row = []
for m in range(1, halflen):
mn = (m*n)%len
if mn > len/2:
mn = len-mn
row.append(f"-self.twiddle{mn}.im*x{m}{len-m}n.im")
else:
row.append(f"self.twiddle{mn}.im*x{m}{len-m}n.im")
print(f"let b{n}{len-n}re_b = " + " + ".join(row) + ";")
print("")
for n in range(1, halflen):
row = [f"let b{n}{len-n}im_a = buffer.get_unchecked(0).im"]
for m in range(1, halflen):
mn = (m*n)%len
if mn > len/2:
mn = len-mn
row.append(f"self.twiddle{mn}.re*x{m}{len-m}p.im")
print(" + ".join(row) + ";")
row = []
for m in range(1, halflen):
mn = (m*n)%len
if mn > len/2:
mn = len-mn
row.append(f"-self.twiddle{mn}.im*x{m}{len-m}n.re")
else:
row.append(f"self.twiddle{mn}.im*x{m}{len-m}n.re")
print(f"let b{n}{len-n}im_b = " + " + ".join(row) + ";")
print("")
for n in range(1,len):
nfold = n
sign_re = "-"
sign_im = "+"
if n > len/2:
nfold = len-n
sign_re = "+"
sign_im = "-"
print(f"let out{n}re = b{nfold}{len-nfold}re_a {sign_re} b{nfold}{len-nfold}re_b;")
print(f"let out{n}im = b{nfold}{len-nfold}im_a {sign_im} b{nfold}{len-nfold}im_b;")
print("*buffer.get_unchecked_mut(0) = sum;")
for n in range(1,len):
print(f"*buffer.get_unchecked_mut({n}) = Complex{{ re: out{n}re, im: out{n}im }};")

View File

@@ -0,0 +1,65 @@
import sys
import math
from matplotlib import pyplot as plt
with open(sys.argv[1]) as f:
lines = f.readlines()
results = {"f32": {"scalar": {}, "sse": {}, "avx":{}}, "f64": {"scalar": {}, "sse": {}, "avx":{}}}
for line in lines:
if line.startswith("test ") and not line.startswith("test result"):
name, result = line.split("... bench:")
name = name.split()[1]
_, length, ftype, algo = name.split("_")
value = float(result.strip().split(" ")[0].replace(",", ""))
results[ftype][algo][float(length)] = value
lengths = sorted(list(results["f32"]["scalar"].keys()))
scalar_32 = []
avx_32 = []
sse_32 = []
for l in lengths:
sc32 = results["f32"]["scalar"][l]
av32 = results["f32"]["avx"][l]
ss32 = results["f32"]["sse"][l]
scalar_32.append(100.0)
sse_32.append(100.0 * sc32/ss32)
avx_32.append(100.0 * sc32/av32)
scalar_64 = []
avx_64 = []
sse_64 = []
for l in lengths:
sc64 = results["f64"]["scalar"][l]
av64 = results["f64"]["avx"][l]
ss64 = results["f64"]["sse"][l]
scalar_64.append(100.0)
sse_64.append(100.0 * sc64/ss64)
avx_64.append(100.0 * sc64/av64)
lengths = [math.log(l, 2) for l in lengths]
plt.figure()
plt.plot(lengths, scalar_64, lengths, sse_64, lengths, avx_64)
plt.title("f64")
plt.ylabel("relative speed, %")
plt.xlabel("log2(length)")
plt.xticks(list(range(4,23)))
plt.grid()
plt.legend(["scalar", "sse", "avx"])
plt.figure()
plt.plot(lengths, scalar_32, lengths, sse_32, lengths, avx_32)
plt.title("f32")
plt.ylabel("relative speed, %")
plt.xlabel("log2(length)")
plt.legend(["scalar", "sse", "avx"])
plt.xticks(list(range(4,23)))
plt.grid()
plt.show()

View File

@@ -0,0 +1,59 @@
import sys
import math
from matplotlib import pyplot as plt
with open(sys.argv[1]) as f:
lines = f.readlines()
results = {"f32": {"scalar": {}, "neon": {}}, "f64": {"scalar": {}, "neon": {}}}
for line in lines:
if line.startswith("test ") and not line.startswith("test result"):
name, result = line.split("... bench:")
name = name.split()[1]
_, length, ftype, algo = name.split("_")
value = float(result.strip().split(" ")[0].replace(",", ""))
results[ftype][algo][float(length)] = value
lengths = sorted(list(results["f32"]["scalar"].keys()))
scalar_32 = []
neon_32 = []
for l in lengths:
sc32 = results["f32"]["scalar"][l]
nn32 = results["f32"]["neon"][l]
scalar_32.append(100.0)
neon_32.append(100.0 * sc32/nn32)
scalar_64 = []
neon_64 = []
for l in lengths:
sc64 = results["f64"]["scalar"][l]
nn64 = results["f64"]["neon"][l]
scalar_64.append(100.0)
neon_64.append(100.0 * sc64/nn64)
lengths = [math.log(l, 2) for l in lengths]
plt.figure()
plt.plot(lengths, scalar_64, lengths, neon_64)
plt.title("f64")
plt.ylabel("relative speed, %")
plt.xlabel("log2(length)")
plt.xticks(list(range(4,23)))
plt.grid()
plt.legend(["scalar", "neon"])
plt.figure()
plt.plot(lengths, scalar_32, lengths, neon_32)
plt.title("f32")
plt.ylabel("relative speed, %")
plt.xlabel("log2(length)")
plt.legend(["scalar", "neon"])
plt.xticks(list(range(4,23)))
plt.grid()
plt.show()