更新libclamav库1.0.0版本
This commit is contained in:
786
clamav/libclamav_rust/.cargo/vendor/strsim/src/lib.rs
vendored
Normal file
786
clamav/libclamav_rust/.cargo/vendor/strsim/src/lib.rs
vendored
Normal file
@@ -0,0 +1,786 @@
|
||||
//! This library implements string similarity metrics.
|
||||
|
||||
use std::char;
|
||||
use std::cmp::{max, min};
|
||||
use std::collections::HashMap;
|
||||
|
||||
#[derive(Debug, PartialEq)]
|
||||
pub enum StrSimError {
|
||||
DifferentLengthArgs
|
||||
}
|
||||
|
||||
pub type HammingResult = Result<usize, StrSimError>;
|
||||
|
||||
/// Calculates the number of positions in the two strings where the characters
|
||||
/// differ. Returns an error if the strings have different lengths.
|
||||
///
|
||||
/// ```
|
||||
/// use strsim::hamming;
|
||||
///
|
||||
/// match hamming("hamming", "hammers") {
|
||||
/// Ok(distance) => assert_eq!(3, distance),
|
||||
/// Err(why) => panic!("{:?}", why)
|
||||
/// }
|
||||
/// ```
|
||||
pub fn hamming(a: &str, b: &str) -> HammingResult {
|
||||
let (mut ita, mut itb, mut count) = (a.chars(), b.chars(), 0);
|
||||
loop {
|
||||
match (ita.next(), itb.next()){
|
||||
(Some(x), Some(y)) => if x != y { count += 1 },
|
||||
(None, None) => return Ok(count),
|
||||
_ => return Err(StrSimError::DifferentLengthArgs),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Calculates the Jaro similarity between two strings. The returned value
|
||||
/// is between 0.0 and 1.0 (higher value means more similar).
|
||||
///
|
||||
/// ```
|
||||
/// use strsim::jaro;
|
||||
///
|
||||
/// assert!((0.392 - jaro("Friedrich Nietzsche", "Jean-Paul Sartre")).abs() <
|
||||
/// 0.001);
|
||||
/// ```
|
||||
pub fn jaro(a: &str, b: &str) -> f64 {
|
||||
if a == b { return 1.0; }
|
||||
|
||||
let a_len = a.chars().count();
|
||||
let b_len = b.chars().count();
|
||||
|
||||
// The check for lengths of one here is to prevent integer overflow when
|
||||
// calculating the search range.
|
||||
if a_len == 0 || b_len == 0 || (a_len == 1 && b_len == 1) {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
let search_range = (max(a_len, b_len) / 2) - 1;
|
||||
|
||||
let mut b_consumed = Vec::with_capacity(b_len);
|
||||
for _ in 0..b_len {
|
||||
b_consumed.push(false);
|
||||
}
|
||||
let mut matches = 0.0;
|
||||
|
||||
let mut transpositions = 0.0;
|
||||
let mut b_match_index = 0;
|
||||
|
||||
for (i, a_char) in a.chars().enumerate() {
|
||||
let min_bound =
|
||||
// prevent integer wrapping
|
||||
if i > search_range {
|
||||
max(0, i - search_range)
|
||||
} else {
|
||||
0
|
||||
};
|
||||
|
||||
let max_bound = min(b_len - 1, i + search_range);
|
||||
|
||||
if min_bound > max_bound {
|
||||
continue;
|
||||
}
|
||||
|
||||
for (j, b_char) in b.chars().enumerate() {
|
||||
if min_bound <= j && j <= max_bound && a_char == b_char &&
|
||||
!b_consumed[j] {
|
||||
b_consumed[j] = true;
|
||||
matches += 1.0;
|
||||
|
||||
if j < b_match_index {
|
||||
transpositions += 1.0;
|
||||
}
|
||||
b_match_index = j;
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if matches == 0.0 {
|
||||
0.0
|
||||
} else {
|
||||
(1.0 / 3.0) * ((matches / a_len as f64) +
|
||||
(matches / b_len as f64) +
|
||||
((matches - transpositions) / matches))
|
||||
}
|
||||
}
|
||||
|
||||
/// Like Jaro but gives a boost to strings that have a common prefix.
|
||||
///
|
||||
/// ```
|
||||
/// use strsim::jaro_winkler;
|
||||
///
|
||||
/// assert!((0.911 - jaro_winkler("cheeseburger", "cheese fries")).abs() <
|
||||
/// 0.001);
|
||||
/// ```
|
||||
pub fn jaro_winkler(a: &str, b: &str) -> f64 {
|
||||
let jaro_distance = jaro(a, b);
|
||||
|
||||
// Don't limit the length of the common prefix
|
||||
let prefix_length = a.chars()
|
||||
.zip(b.chars())
|
||||
.take_while(|&(a_char, b_char)| a_char == b_char)
|
||||
.count();
|
||||
|
||||
let jaro_winkler_distance =
|
||||
jaro_distance + (0.1 * prefix_length as f64 * (1.0 - jaro_distance));
|
||||
|
||||
if jaro_winkler_distance <= 1.0 {
|
||||
jaro_winkler_distance
|
||||
} else {
|
||||
1.0
|
||||
}
|
||||
}
|
||||
|
||||
/// Calculates the minimum number of insertions, deletions, and substitutions
|
||||
/// required to change one string into the other.
|
||||
///
|
||||
/// ```
|
||||
/// use strsim::levenshtein;
|
||||
///
|
||||
/// assert_eq!(3, levenshtein("kitten", "sitting"));
|
||||
/// ```
|
||||
pub fn levenshtein(a: &str, b: &str) -> usize {
|
||||
if a == b { return 0; }
|
||||
|
||||
let a_len = a.chars().count();
|
||||
let b_len = b.chars().count();
|
||||
|
||||
if a_len == 0 { return b_len; }
|
||||
if b_len == 0 { return a_len; }
|
||||
|
||||
let mut cache: Vec<usize> = (1..b_len+1).collect();
|
||||
|
||||
let mut result = 0;
|
||||
let mut distance_a;
|
||||
let mut distance_b;
|
||||
|
||||
for (i, a_char) in a.chars().enumerate() {
|
||||
result = i;
|
||||
distance_b = i;
|
||||
|
||||
for (j, b_char) in b.chars().enumerate() {
|
||||
let cost = if a_char == b_char { 0 } else { 1 };
|
||||
distance_a = distance_b + cost;
|
||||
distance_b = cache[j];
|
||||
result = min(result + 1, min(distance_a, distance_b + 1));
|
||||
cache[j] = result;
|
||||
}
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
/// Calculates a normalized score of the Levenshtein algorithm between 0.0 and
|
||||
/// 1.0 (inclusive), where 1.0 means the strings are the same.
|
||||
///
|
||||
/// ```
|
||||
/// use strsim::normalized_levenshtein;
|
||||
///
|
||||
/// assert!((normalized_levenshtein("kitten", "sitting") - 0.57142).abs() < 0.00001);
|
||||
/// assert!((normalized_levenshtein("", "") - 1.0).abs() < 0.00001);
|
||||
/// assert!(normalized_levenshtein("", "second").abs() < 0.00001);
|
||||
/// assert!(normalized_levenshtein("first", "").abs() < 0.00001);
|
||||
/// assert!((normalized_levenshtein("string", "string") - 1.0).abs() < 0.00001);
|
||||
/// ```
|
||||
pub fn normalized_levenshtein(a: &str, b: &str) -> f64 {
|
||||
if a.is_empty() && b.is_empty() {
|
||||
return 1.0;
|
||||
}
|
||||
1.0 - (levenshtein(a, b) as f64) / (a.chars().count().max(b.chars().count()) as f64)
|
||||
}
|
||||
|
||||
/// Like Levenshtein but allows for adjacent transpositions. Each substring can
|
||||
/// only be edited once.
|
||||
///
|
||||
/// ```
|
||||
/// use strsim::osa_distance;
|
||||
///
|
||||
/// assert_eq!(3, osa_distance("ab", "bca"));
|
||||
/// ```
|
||||
pub fn osa_distance(a: &str, b: &str) -> usize {
|
||||
let a_len = a.chars().count();
|
||||
let b_len = b.chars().count();
|
||||
if a == b { return 0; }
|
||||
else if a_len == 0 { return b_len; }
|
||||
else if b_len == 0 { return a_len; }
|
||||
|
||||
let mut prev_two_distances: Vec<usize> = Vec::with_capacity(b_len + 1);
|
||||
let mut prev_distances: Vec<usize> = Vec::with_capacity(b_len + 1);
|
||||
let mut curr_distances: Vec<usize> = Vec::with_capacity(b_len + 1);
|
||||
|
||||
let mut prev_a_char = char::MAX;
|
||||
let mut prev_b_char = char::MAX;
|
||||
|
||||
for i in 0..(b_len + 1) {
|
||||
prev_two_distances.push(i);
|
||||
prev_distances.push(i);
|
||||
curr_distances.push(0);
|
||||
}
|
||||
|
||||
for (i, a_char) in a.chars().enumerate() {
|
||||
curr_distances[0] = i + 1;
|
||||
|
||||
for (j, b_char) in b.chars().enumerate() {
|
||||
let cost = if a_char == b_char { 0 } else { 1 };
|
||||
curr_distances[j + 1] = min(curr_distances[j] + 1,
|
||||
min(prev_distances[j + 1] + 1,
|
||||
prev_distances[j] + cost));
|
||||
if i > 0 && j > 0 && a_char != b_char &&
|
||||
a_char == prev_b_char && b_char == prev_a_char {
|
||||
curr_distances[j + 1] = min(curr_distances[j + 1],
|
||||
prev_two_distances[j - 1] + 1);
|
||||
}
|
||||
|
||||
prev_b_char = b_char;
|
||||
}
|
||||
|
||||
prev_two_distances.clone_from(&prev_distances);
|
||||
prev_distances.clone_from(&curr_distances);
|
||||
prev_a_char = a_char;
|
||||
}
|
||||
|
||||
curr_distances[b_len]
|
||||
|
||||
}
|
||||
|
||||
/// Like optimal string alignment, but substrings can be edited an unlimited
|
||||
/// number of times, and the triangle inequality holds.
|
||||
///
|
||||
/// ```
|
||||
/// use strsim::damerau_levenshtein;
|
||||
///
|
||||
/// assert_eq!(2, damerau_levenshtein("ab", "bca"));
|
||||
/// ```
|
||||
pub fn damerau_levenshtein(a: &str, b: &str) -> usize {
|
||||
if a == b { return 0; }
|
||||
|
||||
let a_chars: Vec<char> = a.chars().collect();
|
||||
let b_chars: Vec<char> = b.chars().collect();
|
||||
let a_len = a_chars.len();
|
||||
let b_len = b_chars.len();
|
||||
|
||||
if a_len == 0 { return b_len; }
|
||||
if b_len == 0 { return a_len; }
|
||||
|
||||
let mut distances = vec![vec![0; b_len + 2]; a_len + 2];
|
||||
let max_distance = a_len + b_len;
|
||||
distances[0][0] = max_distance;
|
||||
|
||||
for i in 0..(a_len + 1) {
|
||||
distances[i + 1][0] = max_distance;
|
||||
distances[i + 1][1] = i;
|
||||
}
|
||||
|
||||
for j in 0..(b_len + 1) {
|
||||
distances[0][j + 1] = max_distance;
|
||||
distances[1][j + 1] = j;
|
||||
}
|
||||
|
||||
let mut chars: HashMap<char, usize> = HashMap::new();
|
||||
|
||||
for i in 1..(a_len + 1) {
|
||||
let mut db = 0;
|
||||
|
||||
for j in 1..(b_len + 1) {
|
||||
let k = match chars.get(&b_chars[j - 1]) {
|
||||
Some(value) => value.clone(),
|
||||
None => 0
|
||||
};
|
||||
|
||||
let l = db;
|
||||
|
||||
let mut cost = 1;
|
||||
if a_chars[i - 1] == b_chars[j - 1] {
|
||||
cost = 0;
|
||||
db = j;
|
||||
}
|
||||
|
||||
let substitution_cost = distances[i][j] + cost;
|
||||
let insertion_cost = distances[i][j + 1] + 1;
|
||||
let deletion_cost = distances[i + 1][j] + 1;
|
||||
let transposition_cost = distances[k][l] + (i - k - 1) + 1 +
|
||||
(j - l - 1);
|
||||
|
||||
distances[i + 1][j + 1] = min(substitution_cost,
|
||||
min(insertion_cost,
|
||||
min(deletion_cost,
|
||||
transposition_cost)));
|
||||
}
|
||||
|
||||
chars.insert(a_chars[i - 1], i);
|
||||
}
|
||||
|
||||
distances[a_len + 1][b_len + 1]
|
||||
}
|
||||
|
||||
/// Calculates a normalized score of the Damerau–Levenshtein algorithm between
|
||||
/// 0.0 and 1.0 (inclusive), where 1.0 means the strings are the same.
|
||||
///
|
||||
/// ```
|
||||
/// use strsim::normalized_damerau_levenshtein;
|
||||
///
|
||||
/// assert!((normalized_damerau_levenshtein("levenshtein", "löwenbräu") - 0.27272).abs() < 0.00001);
|
||||
/// assert!((normalized_damerau_levenshtein("", "") - 1.0).abs() < 0.00001);
|
||||
/// assert!(normalized_damerau_levenshtein("", "flower").abs() < 0.00001);
|
||||
/// assert!(normalized_damerau_levenshtein("tree", "").abs() < 0.00001);
|
||||
/// assert!((normalized_damerau_levenshtein("sunglasses", "sunglasses") - 1.0).abs() < 0.00001);
|
||||
/// ```
|
||||
pub fn normalized_damerau_levenshtein(a: &str, b: &str) -> f64 {
|
||||
if a.is_empty() && b.is_empty() {
|
||||
return 1.0;
|
||||
}
|
||||
1.0 - (damerau_levenshtein(a, b) as f64) / (a.chars().count().max(b.chars().count()) as f64)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn hamming_empty() {
|
||||
match hamming("", "") {
|
||||
Ok(distance) => { assert_eq!(0, distance); },
|
||||
Err(why) => { panic!("{:?}", why); }
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn hamming_same() {
|
||||
match hamming("hamming", "hamming") {
|
||||
Ok(distance) => { assert_eq!(0, distance); },
|
||||
Err(why) => { panic!("{:?}", why); }
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn hamming_diff() {
|
||||
match hamming("hamming", "hammers") {
|
||||
Ok(distance) => { assert_eq!(3, distance); },
|
||||
Err(why) => { panic!("{:?}", why); }
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn hamming_diff_multibyte() {
|
||||
match hamming("hamming", "h香mmüng") {
|
||||
Ok(distance) => { assert_eq!(2, distance); },
|
||||
Err(why) => { panic!("{:?}", why); }
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn hamming_unequal_length() {
|
||||
match hamming("ham", "hamming") {
|
||||
Ok(_) => { panic!(); },
|
||||
Err(why) => { assert_eq!(why, StrSimError::DifferentLengthArgs); }
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn hamming_names() {
|
||||
match hamming("Friedrich Nietzs", "Jean-Paul Sartre") {
|
||||
Ok(distance) => { assert_eq!(14, distance); },
|
||||
Err(why) => { panic!("{:?}", why); }
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_both_empty() {
|
||||
assert_eq!(1.0, jaro("", ""));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_first_empty() {
|
||||
assert_eq!(0.0, jaro("", "jaro"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_second_empty() {
|
||||
assert_eq!(0.0, jaro("distance", ""));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_same() {
|
||||
assert_eq!(1.0, jaro("jaro", "jaro"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_multibyte() {
|
||||
assert!((0.818 - jaro("testabctest", "testöঙ香test")) < 0.001);
|
||||
assert!((0.818 - jaro("testöঙ香test", "testabctest")) < 0.001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_diff_short() {
|
||||
assert!((0.767 - jaro("dixon", "dicksonx")).abs() < 0.001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_diff_one_character() {
|
||||
assert_eq!(0.0, jaro("a", "b"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_diff_one_and_two() {
|
||||
assert!((0.83 - jaro("a", "ab")).abs() < 0.01);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_diff_two_and_one() {
|
||||
assert!((0.83 - jaro("ab", "a")).abs() < 0.01);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_diff_no_transposition() {
|
||||
assert!((0.822 - jaro("dwayne", "duane")).abs() < 0.001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_diff_with_transposition() {
|
||||
assert!((0.944 - jaro("martha", "marhta")).abs() < 0.001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_names() {
|
||||
assert!((0.392 - jaro("Friedrich Nietzsche",
|
||||
"Jean-Paul Sartre")).abs() < 0.001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_winkler_both_empty() {
|
||||
assert_eq!(1.0, jaro_winkler("", ""));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_winkler_first_empty() {
|
||||
assert_eq!(0.0, jaro_winkler("", "jaro-winkler"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_winkler_second_empty() {
|
||||
assert_eq!(0.0, jaro_winkler("distance", ""));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_winkler_same() {
|
||||
assert_eq!(1.0, jaro_winkler("Jaro-Winkler", "Jaro-Winkler"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_winkler_multibyte() {
|
||||
assert!((0.89 - jaro_winkler("testabctest", "testöঙ香test")).abs() <
|
||||
0.001);
|
||||
assert!((0.89 - jaro_winkler("testöঙ香test", "testabctest")).abs() <
|
||||
0.001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_winkler_diff_short() {
|
||||
assert!((0.813 - jaro_winkler("dixon", "dicksonx")).abs() < 0.001);
|
||||
assert!((0.813 - jaro_winkler("dicksonx", "dixon")).abs() < 0.001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_winkler_diff_one_character() {
|
||||
assert_eq!(0.0, jaro_winkler("a", "b"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_winkler_diff_no_transposition() {
|
||||
assert!((0.840 - jaro_winkler("dwayne", "duane")).abs() < 0.001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_winkler_diff_with_transposition() {
|
||||
assert!((0.961 - jaro_winkler("martha", "marhta")).abs() < 0.001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_winkler_names() {
|
||||
assert!((0.562 - jaro_winkler("Friedrich Nietzsche",
|
||||
"Fran-Paul Sartre")).abs() < 0.001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_winkler_long_prefix() {
|
||||
assert!((0.911 - jaro_winkler("cheeseburger", "cheese fries")).abs() <
|
||||
0.001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_winkler_more_names() {
|
||||
assert!((0.868 - jaro_winkler("Thorkel", "Thorgier")).abs() < 0.001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_winkler_length_of_one() {
|
||||
assert!((0.738 - jaro_winkler("Dinsdale", "D")).abs() < 0.001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn jaro_winkler_very_long_prefix() {
|
||||
assert!((1.0 - jaro_winkler("thequickbrownfoxjumpedoverx",
|
||||
"thequickbrownfoxjumpedovery")).abs() <
|
||||
0.001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn levenshtein_empty() {
|
||||
assert_eq!(0, levenshtein("", ""));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn levenshtein_same() {
|
||||
assert_eq!(0, levenshtein("levenshtein", "levenshtein"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn levenshtein_diff_short() {
|
||||
assert_eq!(3, levenshtein("kitten", "sitting"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn levenshtein_diff_with_space() {
|
||||
assert_eq!(5, levenshtein("hello, world", "bye, world"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn levenshtein_diff_multibyte() {
|
||||
assert_eq!(3, levenshtein("öঙ香", "abc"));
|
||||
assert_eq!(3, levenshtein("abc", "öঙ香"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn levenshtein_diff_longer() {
|
||||
let a = "The quick brown fox jumped over the angry dog.";
|
||||
let b = "Lorem ipsum dolor sit amet, dicta latine an eam.";
|
||||
assert_eq!(37, levenshtein(a, b));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn levenshtein_first_empty() {
|
||||
assert_eq!(7, levenshtein("", "sitting"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn levenshtein_second_empty() {
|
||||
assert_eq!(6, levenshtein("kitten", ""));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn normalized_levenshtein_diff_short() {
|
||||
assert!((normalized_levenshtein("kitten", "sitting") - 0.57142).abs() < 0.00001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn normalized_levenshtein_for_empty_strings() {
|
||||
assert!((normalized_levenshtein("", "") - 1.0).abs() < 0.00001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn normalized_levenshtein_first_empty() {
|
||||
assert!(normalized_levenshtein("", "second").abs() < 0.00001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn normalized_levenshtein_second_empty() {
|
||||
assert!(normalized_levenshtein("first", "").abs() < 0.00001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn normalized_levenshtein_identical_strings() {
|
||||
assert!((normalized_levenshtein("identical", "identical") - 1.0).abs() < 0.00001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn osa_distance_empty() {
|
||||
assert_eq!(0, osa_distance("", ""));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn osa_distance_same() {
|
||||
assert_eq!(0, osa_distance("damerau", "damerau"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn osa_distance_first_empty() {
|
||||
assert_eq!(7, osa_distance("", "damerau"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn osa_distance_second_empty() {
|
||||
assert_eq!(7, osa_distance("damerau", ""));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn osa_distance_diff() {
|
||||
assert_eq!(3, osa_distance("ca", "abc"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn osa_distance_diff_short() {
|
||||
assert_eq!(3, osa_distance("damerau", "aderua"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn osa_distance_diff_reversed() {
|
||||
assert_eq!(3, osa_distance("aderua", "damerau"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn osa_distance_diff_multibyte() {
|
||||
assert_eq!(3, osa_distance("öঙ香", "abc"));
|
||||
assert_eq!(3, osa_distance("abc", "öঙ香"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn osa_distance_diff_unequal_length() {
|
||||
assert_eq!(6, osa_distance("damerau", "aderuaxyz"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn osa_distance_diff_unequal_length_reversed() {
|
||||
assert_eq!(6, osa_distance("aderuaxyz", "damerau"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn osa_distance_diff_comedians() {
|
||||
assert_eq!(5, osa_distance("Stewart", "Colbert"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn osa_distance_many_transpositions() {
|
||||
assert_eq!(4, osa_distance("abcdefghijkl", "bacedfgihjlk"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn osa_distance_diff_longer() {
|
||||
let a = "The quick brown fox jumped over the angry dog.";
|
||||
let b = "Lehem ipsum dolor sit amet, dicta latine an eam.";
|
||||
assert_eq!(36, osa_distance(a, b));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn osa_distance_beginning_transposition() {
|
||||
assert_eq!(1, osa_distance("foobar", "ofobar"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn osa_distance_end_transposition() {
|
||||
assert_eq!(1, osa_distance("specter", "spectre"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn osa_distance_restricted_edit() {
|
||||
assert_eq!(4, osa_distance("a cat", "an abct"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn damerau_levenshtein_empty() {
|
||||
assert_eq!(0, damerau_levenshtein("", ""));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn damerau_levenshtein_same() {
|
||||
assert_eq!(0, damerau_levenshtein("damerau", "damerau"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn damerau_levenshtein_first_empty() {
|
||||
assert_eq!(7, damerau_levenshtein("", "damerau"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn damerau_levenshtein_second_empty() {
|
||||
assert_eq!(7, damerau_levenshtein("damerau", ""));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn damerau_levenshtein_diff() {
|
||||
assert_eq!(2, damerau_levenshtein("ca", "abc"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn damerau_levenshtein_diff_short() {
|
||||
assert_eq!(3, damerau_levenshtein("damerau", "aderua"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn damerau_levenshtein_diff_reversed() {
|
||||
assert_eq!(3, damerau_levenshtein("aderua", "damerau"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn damerau_levenshtein_diff_multibyte() {
|
||||
assert_eq!(3, damerau_levenshtein("öঙ香", "abc"));
|
||||
assert_eq!(3, damerau_levenshtein("abc", "öঙ香"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn damerau_levenshtein_diff_unequal_length() {
|
||||
assert_eq!(6, damerau_levenshtein("damerau", "aderuaxyz"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn damerau_levenshtein_diff_unequal_length_reversed() {
|
||||
assert_eq!(6, damerau_levenshtein("aderuaxyz", "damerau"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn damerau_levenshtein_diff_comedians() {
|
||||
assert_eq!(5, damerau_levenshtein("Stewart", "Colbert"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn damerau_levenshtein_many_transpositions() {
|
||||
assert_eq!(4, damerau_levenshtein("abcdefghijkl", "bacedfgihjlk"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn damerau_levenshtein_diff_longer() {
|
||||
let a = "The quick brown fox jumped over the angry dog.";
|
||||
let b = "Lehem ipsum dolor sit amet, dicta latine an eam.";
|
||||
assert_eq!(36, damerau_levenshtein(a, b));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn damerau_levenshtein_beginning_transposition() {
|
||||
assert_eq!(1, damerau_levenshtein("foobar", "ofobar"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn damerau_levenshtein_end_transposition() {
|
||||
assert_eq!(1, damerau_levenshtein("specter", "spectre"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn damerau_levenshtein_unrestricted_edit() {
|
||||
assert_eq!(3, damerau_levenshtein("a cat", "an abct"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn normalized_damerau_levenshtein_diff_short() {
|
||||
assert!((normalized_damerau_levenshtein("levenshtein", "löwenbräu") - 0.27272).abs() < 0.00001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn normalized_damerau_levenshtein_for_empty_strings() {
|
||||
assert!((normalized_damerau_levenshtein("", "") - 1.0).abs() < 0.00001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn normalized_damerau_levenshtein_first_empty() {
|
||||
assert!(normalized_damerau_levenshtein("", "flower").abs() < 0.00001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn normalized_damerau_levenshtein_second_empty() {
|
||||
assert!(normalized_damerau_levenshtein("tree", "").abs() < 0.00001);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn normalized_damerau_levenshtein_identical_strings() {
|
||||
assert!((normalized_damerau_levenshtein("sunglasses", "sunglasses") - 1.0).abs() < 0.00001);
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user