更新libclamav库1.0.0版本

This commit is contained in:
2023-01-14 18:28:39 +08:00
parent b879ee0b2e
commit 45fe15f472
8531 changed files with 1222046 additions and 177272 deletions

View File

@@ -0,0 +1,83 @@
use crate::{encoder::compression::*, tags::CompressionMethod};
use flate2::{write::ZlibEncoder, Compression as FlateCompression};
use std::io::Write;
/// The Deflate algorithm used to compress image data in TIFF files.
#[derive(Debug, Clone, Copy)]
pub struct Deflate {
level: FlateCompression,
}
/// The level of compression used by the Deflate algorithm.
/// It allows trading compression ratio for compression speed.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
#[non_exhaustive]
pub enum DeflateLevel {
/// The fastest possible compression mode.
Fast = 1,
/// The conserative choice between speed and ratio.
Balanced = 6,
/// The best compression available with Deflate.
Best = 9,
}
impl Default for DeflateLevel {
fn default() -> Self {
DeflateLevel::Balanced
}
}
impl Deflate {
/// Create a new deflate compressor with a specific level of compression.
pub fn with_level(level: DeflateLevel) -> Self {
Self {
level: FlateCompression::new(level as u32),
}
}
}
impl Default for Deflate {
fn default() -> Self {
Self::with_level(DeflateLevel::default())
}
}
impl Compression for Deflate {
const COMPRESSION_METHOD: CompressionMethod = CompressionMethod::Deflate;
fn get_algorithm(&self) -> Compressor {
Compressor::Deflate(self.clone())
}
}
impl CompressionAlgorithm for Deflate {
fn write_to<W: Write>(&mut self, writer: &mut W, bytes: &[u8]) -> Result<u64, io::Error> {
let mut encoder = ZlibEncoder::new(writer, self.level);
encoder.write_all(bytes)?;
encoder.try_finish()?;
Ok(encoder.total_out())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::encoder::compression::tests::TEST_DATA;
use std::io::Cursor;
#[test]
fn test_deflate() {
const EXPECTED_COMPRESSED_DATA: [u8; 64] = [
0x78, 0x9C, 0x15, 0xC7, 0xD1, 0x0D, 0x80, 0x20, 0x0C, 0x04, 0xD0, 0x55, 0x6E, 0x02,
0xA7, 0x71, 0x81, 0xA6, 0x41, 0xDA, 0x28, 0xD4, 0xF4, 0xD0, 0xF9, 0x81, 0xE4, 0xFD,
0xBC, 0xD3, 0x9C, 0x58, 0x04, 0x1C, 0xE9, 0xBD, 0xE2, 0x8A, 0x84, 0x5A, 0xD1, 0x7B,
0xE7, 0x97, 0xF4, 0xF8, 0x08, 0x8D, 0xF6, 0x66, 0x21, 0x3D, 0x3A, 0xE4, 0xA9, 0x91,
0x3E, 0xAC, 0xF1, 0x98, 0xB9, 0x70, 0x17, 0x13,
];
let mut compressed_data = Vec::<u8>::new();
let mut writer = Cursor::new(&mut compressed_data);
Deflate::default().write_to(&mut writer, TEST_DATA).unwrap();
assert_eq!(EXPECTED_COMPRESSED_DATA, compressed_data.as_slice());
}
}

View File

@@ -0,0 +1,47 @@
use crate::{encoder::compression::*, tags::CompressionMethod};
use std::io::Write;
use weezl::encode::Encoder as LZWEncoder;
/// The LZW algorithm used to compress image data in TIFF files.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
pub struct Lzw;
impl Compression for Lzw {
const COMPRESSION_METHOD: CompressionMethod = CompressionMethod::LZW;
fn get_algorithm(&self) -> Compressor {
Compressor::Lzw(*self)
}
}
impl CompressionAlgorithm for Lzw {
fn write_to<W: Write>(&mut self, writer: &mut W, bytes: &[u8]) -> Result<u64, io::Error> {
let mut encoder = LZWEncoder::with_tiff_size_switch(weezl::BitOrder::Msb, 8);
let result = encoder.into_stream(writer).encode_all(bytes);
let byte_count = result.bytes_written as u64;
result.status.map(|_| byte_count)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::encoder::compression::tests::TEST_DATA;
use std::io::Cursor;
#[test]
fn test_lzw() {
const EXPECTED_COMPRESSED_DATA: [u8; 63] = [
0x80, 0x15, 0x0D, 0x06, 0x93, 0x98, 0x82, 0x08, 0x20, 0x30, 0x88, 0x0E, 0x67, 0x43,
0x91, 0xA4, 0xDC, 0x67, 0x10, 0x19, 0x8D, 0xE7, 0x21, 0x01, 0x8C, 0xD0, 0x65, 0x31,
0x9A, 0xE1, 0xD1, 0x03, 0xB1, 0x86, 0x1A, 0x6F, 0x3A, 0xC1, 0x4C, 0x66, 0xF3, 0x69,
0xC0, 0xE4, 0x65, 0x39, 0x9C, 0xCD, 0x26, 0xF3, 0x74, 0x20, 0xD8, 0x67, 0x89, 0x9A,
0x4E, 0x86, 0x83, 0x69, 0xCC, 0x5D, 0x01,
];
let mut compressed_data = Vec::<u8>::new();
let mut writer = Cursor::new(&mut compressed_data);
Lzw::default().write_to(&mut writer, TEST_DATA).unwrap();
assert_eq!(EXPECTED_COMPRESSED_DATA, compressed_data.as_slice());
}
}

View File

@@ -0,0 +1,60 @@
use crate::tags::CompressionMethod;
use std::io::{self, Write};
mod deflate;
mod lzw;
mod packbits;
mod uncompressed;
pub use self::deflate::{Deflate, DeflateLevel};
pub use self::lzw::Lzw;
pub use self::packbits::Packbits;
pub use self::uncompressed::Uncompressed;
/// An algorithm used for compression
pub trait CompressionAlgorithm {
/// The algorithm writes data directly into the writer.
/// It returns the total number of bytes written.
fn write_to<W: Write>(&mut self, writer: &mut W, bytes: &[u8]) -> Result<u64, io::Error>;
}
/// An algorithm used for compression with associated enums and optional configurations.
pub trait Compression: CompressionAlgorithm {
/// The corresponding tag to the algorithm.
const COMPRESSION_METHOD: CompressionMethod;
/// Method to optain a type that can store each variant of comression algorithm.
fn get_algorithm(&self) -> Compressor;
}
/// An enum to store each compression algorithm.
pub enum Compressor {
Uncompressed(Uncompressed),
Lzw(Lzw),
Deflate(Deflate),
Packbits(Packbits),
}
impl Default for Compressor {
/// The default compression strategy does not apply any compression.
fn default() -> Self {
Compressor::Uncompressed(Uncompressed::default())
}
}
impl CompressionAlgorithm for Compressor {
fn write_to<W: Write>(&mut self, writer: &mut W, bytes: &[u8]) -> Result<u64, io::Error> {
match self {
Compressor::Uncompressed(algorithm) => algorithm.write_to(writer, bytes),
Compressor::Lzw(algorithm) => algorithm.write_to(writer, bytes),
Compressor::Deflate(algorithm) => algorithm.write_to(writer, bytes),
Compressor::Packbits(algorithm) => algorithm.write_to(writer, bytes),
}
}
}
#[cfg(test)]
mod tests {
pub const TEST_DATA: &'static [u8] =
b"This is a string for checking various compression algorithms.";
}

View File

@@ -0,0 +1,214 @@
use crate::{encoder::compression::*, tags::CompressionMethod};
use std::io::{BufWriter, Error, ErrorKind, Write};
/// Compressor that uses the Packbits[^note] algorithm to compress bytes.
///
/// [^note]: PackBits is often ineffective on continuous tone images,
/// including many grayscale images. In such cases, it is better
/// to leave the image uncompressed.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
pub struct Packbits;
impl Compression for Packbits {
const COMPRESSION_METHOD: CompressionMethod = CompressionMethod::PackBits;
fn get_algorithm(&self) -> Compressor {
Compressor::Packbits(*self)
}
}
impl CompressionAlgorithm for Packbits {
fn write_to<W: Write>(&mut self, writer: &mut W, bytes: &[u8]) -> Result<u64, io::Error> {
// Inspired by https://github.com/skirridsystems/packbits
const MIN_REPT: u8 = 3; // Minimum run to compress between differ blocks
const MAX_BYTES: u8 = 128; // Maximum number of bytes that can be encoded in a header byte
// Encoding for header byte based on number of bytes represented.
fn encode_diff(n: u8) -> u8 {
n - 1
}
fn encode_rept(n: u8) -> u8 {
let var = 256 - (n - 1) as u16;
var as u8
}
fn write_u8<W: Write>(writer: &mut W, byte: u8) -> Result<u64, Error> {
writer.write(&[byte]).map(|byte_count| byte_count as u64)
}
let mut bufwriter = BufWriter::new(writer);
let mut bytes_written = 0u64; // The number of bytes written into the writer
let mut offset: Option<u64> = None; // The index of the first byte written into the writer
let mut src_index: usize = 0; // Index of the current byte
let mut src_count = bytes.len(); //The number of bytes remaining to be compressed
let mut in_run = false; // Indication whether counting of similar bytes is performed
let mut run_index = 0u8; // Distance into pending bytes that a run starts
let mut bytes_pending = 0u8; // Bytes looked at but not yet output
let mut pending_index = 0usize; // Index of the first pending byte
let mut curr_byte: u8; // Byte currently being considered
let mut last_byte: u8; // Previous byte
// Need at least one byte to compress
if src_count == 0 {
return Err(Error::new(ErrorKind::WriteZero, "write zero"));
}
// Prime compressor with first character.
last_byte = bytes[src_index];
src_index += 1;
bytes_pending += 1;
while src_count - 1 != 0 {
src_count -= 1;
curr_byte = bytes[src_index];
src_index += 1;
bytes_pending += 1;
if in_run {
if (curr_byte != last_byte) || (bytes_pending > MAX_BYTES) {
offset.get_or_insert(write_u8(&mut bufwriter, encode_rept(bytes_pending - 1))?);
write_u8(&mut bufwriter, last_byte)?;
bytes_written += 2;
bytes_pending = 1;
pending_index = src_index - 1;
run_index = 0;
in_run = false;
}
} else {
if bytes_pending > MAX_BYTES {
// We have as much differing data as we can output in one chunk.
// Output MAX_BYTES leaving one byte.
offset.get_or_insert(write_u8(&mut bufwriter, encode_diff(MAX_BYTES))?);
bufwriter.write(&bytes[pending_index..pending_index + MAX_BYTES as usize])?;
bytes_written += 1 + MAX_BYTES as u64;
pending_index += MAX_BYTES as usize;
bytes_pending -= MAX_BYTES;
run_index = bytes_pending - 1; // A run could start here
} else if curr_byte == last_byte {
if (bytes_pending - run_index >= MIN_REPT) || (run_index == 0) {
// This is a worthwhile run
if run_index != 0 {
// Flush differing data out of input buffer
offset.get_or_insert(write_u8(&mut bufwriter, encode_diff(run_index))?);
bufwriter
.write(&bytes[pending_index..pending_index + run_index as usize])?;
bytes_written += 1 + run_index as u64;
}
bytes_pending -= run_index; // Length of run
in_run = true;
}
} else {
run_index = bytes_pending - 1; // A run could start here
}
}
last_byte = curr_byte;
}
// Output the remainder
if in_run {
bytes_written += 2;
offset.get_or_insert(write_u8(&mut bufwriter, encode_rept(bytes_pending))?);
write_u8(&mut bufwriter, last_byte)?;
} else {
bytes_written += 1 + bytes_pending as u64;
offset.get_or_insert(write_u8(&mut bufwriter, encode_diff(bytes_pending))?);
bufwriter.write(&bytes[pending_index..pending_index + bytes_pending as usize])?;
}
bufwriter.flush()?;
Ok(bytes_written)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::encoder::compression::tests::TEST_DATA;
use std::io::Cursor;
#[test]
fn test_packbits_single_byte() {
// compress single byte
const UNCOMPRESSED_DATA: [u8; 1] = [0x3F];
const EXPECTED_COMPRESSED_DATA: [u8; 2] = [0x00, 0x3F];
let mut compressed_data = Vec::<u8>::new();
let mut writer = Cursor::new(&mut compressed_data);
Packbits::default()
.write_to(&mut writer, &UNCOMPRESSED_DATA)
.unwrap();
assert_eq!(compressed_data, EXPECTED_COMPRESSED_DATA);
}
#[test]
fn test_packbits_rept() {
// compress buffer with repetitive sequence
const UNCOMPRESSED_DATA: &'static [u8] =
b"This strrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrring hangs.";
const EXPECTED_COMPRESSED_DATA: &'static [u8] = b"\x06This st\xD1r\x09ing hangs.";
let mut compressed_data = Vec::<u8>::new();
let mut writer = Cursor::new(&mut compressed_data);
Packbits::default()
.write_to(&mut writer, UNCOMPRESSED_DATA)
.unwrap();
assert_eq!(compressed_data, EXPECTED_COMPRESSED_DATA);
}
#[test]
fn test_packbits_large_rept_nonrept() {
// compress buffer with large repetitive and non-repetitive sequence
let mut data = b"This st".to_vec();
for _i in 0..158 {
data.push(b'r');
}
data.extend_from_slice(b"ing hangs.");
for i in 0..158 {
data.push(i);
}
const EXPECTED_COMPRESSED_DATA: [u8; 182] = [
0x06, 0x54, 0x68, 0x69, 0x73, 0x20, 0x73, 0x74, 0x81, 0x72, 0xE3, 0x72, 0x7F, 0x69,
0x6E, 0x67, 0x20, 0x68, 0x61, 0x6E, 0x67, 0x73, 0x2E, 0x00, 0x01, 0x02, 0x03, 0x04,
0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12,
0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20,
0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E,
0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C,
0x3D, 0x3E, 0x3F, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A,
0x4B, 0x4C, 0x4D, 0x4E, 0x4F, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66,
0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F, 0x70, 0x71, 0x72, 0x73, 0x74,
0x75, 0x27, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F, 0x80, 0x81,
0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F,
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D,
];
let mut compressed_data = Vec::<u8>::new();
let mut writer = Cursor::new(&mut compressed_data);
Packbits::default()
.write_to(&mut writer, data.as_slice())
.unwrap();
assert_eq!(compressed_data, EXPECTED_COMPRESSED_DATA);
}
#[test]
fn test_packbits() {
// compress teststring
const EXPECTED_COMPRESSED_DATA: &'static [u8] =
b"\x3CThis is a string for checking various compression algorithms.";
let mut compressed_data = Vec::<u8>::new();
let mut writer = Cursor::new(&mut compressed_data);
Packbits::default()
.write_to(&mut writer, TEST_DATA)
.unwrap();
assert_eq!(compressed_data, EXPECTED_COMPRESSED_DATA);
}
}

View File

@@ -0,0 +1,37 @@
use crate::{encoder::compression::*, tags::CompressionMethod};
use std::io::Write;
/// The default algorithm which does not compress at all.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
pub struct Uncompressed;
impl Compression for Uncompressed {
const COMPRESSION_METHOD: CompressionMethod = CompressionMethod::None;
fn get_algorithm(&self) -> Compressor {
Compressor::Uncompressed(*self)
}
}
impl CompressionAlgorithm for Uncompressed {
fn write_to<W: Write>(&mut self, writer: &mut W, bytes: &[u8]) -> Result<u64, io::Error> {
writer.write(bytes).map(|byte_count| byte_count as u64)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::encoder::compression::tests::TEST_DATA;
use std::io::Cursor;
#[test]
fn test_no_compression() {
let mut compressed_data = Vec::<u8>::new();
let mut writer = Cursor::new(&mut compressed_data);
Uncompressed::default()
.write_to(&mut writer, TEST_DATA)
.unwrap();
assert_eq!(TEST_DATA, compressed_data);
}
}