#[cfg(feature = "bytemuck")] use bytemuck::{Pod, Zeroable}; use core::{ cmp::Ordering, iter::{Product, Sum}, num::FpCategory, ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign}, }; #[cfg(not(target_arch = "spirv"))] use core::{ fmt::{ Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex, }, num::ParseFloatError, str::FromStr, }; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; #[cfg(feature = "zerocopy")] use zerocopy::{AsBytes, FromBytes}; pub(crate) mod convert; /// A 16-bit floating point type implementing the IEEE 754-2008 standard [`binary16`] a.k.a `half` /// format. /// /// This 16-bit floating point type is intended for efficient storage where the full range and /// precision of a larger floating point value is not required. Because [`f16`] is primarily for /// efficient storage, floating point operations such as addition, multiplication, etc. are not /// implemented. Operations should be performed with [`f32`] or higher-precision types and converted /// to/from [`f16`] as necessary. /// /// [`binary16`]: https://en.wikipedia.org/wiki/Half-precision_floating-point_format #[allow(non_camel_case_types)] #[derive(Clone, Copy, Default)] #[repr(transparent)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))] #[cfg_attr(feature = "zerocopy", derive(AsBytes, FromBytes))] pub struct f16(u16); impl f16 { /// Constructs a 16-bit floating point value from the raw bits. #[inline] #[must_use] pub const fn from_bits(bits: u16) -> f16 { f16(bits) } /// Constructs a 16-bit floating point value from a 32-bit floating point value. /// /// If the 32-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are /// preserved. 32-bit subnormal values are too tiny to be represented in 16-bits and result in /// ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals /// or ±0. All other values are truncated and rounded to the nearest representable 16-bit /// value. #[inline] #[must_use] pub fn from_f32(value: f32) -> f16 { f16(convert::f32_to_f16(value)) } /// Constructs a 16-bit floating point value from a 32-bit floating point value. /// /// This function is identical to [`from_f32`][Self::from_f32] except it never uses hardware /// intrinsics, which allows it to be `const`. [`from_f32`][Self::from_f32] should be preferred /// in any non-`const` context. /// /// If the 32-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are /// preserved. 32-bit subnormal values are too tiny to be represented in 16-bits and result in /// ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals /// or ±0. All other values are truncated and rounded to the nearest representable 16-bit /// value. #[inline] #[must_use] pub const fn from_f32_const(value: f32) -> f16 { f16(convert::f32_to_f16_fallback(value)) } /// Constructs a 16-bit floating point value from a 64-bit floating point value. /// /// If the 64-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are /// preserved. 64-bit subnormal values are too tiny to be represented in 16-bits and result in /// ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals /// or ±0. All other values are truncated and rounded to the nearest representable 16-bit /// value. #[inline] #[must_use] pub fn from_f64(value: f64) -> f16 { f16(convert::f64_to_f16(value)) } /// Constructs a 16-bit floating point value from a 64-bit floating point value. /// /// This function is identical to [`from_f64`][Self::from_f64] except it never uses hardware /// intrinsics, which allows it to be `const`. [`from_f64`][Self::from_f64] should be preferred /// in any non-`const` context. /// /// If the 64-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are /// preserved. 64-bit subnormal values are too tiny to be represented in 16-bits and result in /// ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals /// or ±0. All other values are truncated and rounded to the nearest representable 16-bit /// value. #[inline] #[must_use] pub const fn from_f64_const(value: f64) -> f16 { f16(convert::f64_to_f16_fallback(value)) } /// Converts a [`f16`] into the underlying bit representation. #[inline] #[must_use] pub const fn to_bits(self) -> u16 { self.0 } /// Returns the memory representation of the underlying bit representation as a byte array in /// little-endian byte order. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// let bytes = f16::from_f32(12.5).to_le_bytes(); /// assert_eq!(bytes, [0x40, 0x4A]); /// ``` #[inline] #[must_use] pub const fn to_le_bytes(self) -> [u8; 2] { self.0.to_le_bytes() } /// Returns the memory representation of the underlying bit representation as a byte array in /// big-endian (network) byte order. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// let bytes = f16::from_f32(12.5).to_be_bytes(); /// assert_eq!(bytes, [0x4A, 0x40]); /// ``` #[inline] #[must_use] pub const fn to_be_bytes(self) -> [u8; 2] { self.0.to_be_bytes() } /// Returns the memory representation of the underlying bit representation as a byte array in /// native byte order. /// /// As the target platform's native endianness is used, portable code should use /// [`to_be_bytes`][Self::to_be_bytes] or [`to_le_bytes`][Self::to_le_bytes], as appropriate, /// instead. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// let bytes = f16::from_f32(12.5).to_ne_bytes(); /// assert_eq!(bytes, if cfg!(target_endian = "big") { /// [0x4A, 0x40] /// } else { /// [0x40, 0x4A] /// }); /// ``` #[inline] #[must_use] pub const fn to_ne_bytes(self) -> [u8; 2] { self.0.to_ne_bytes() } /// Creates a floating point value from its representation as a byte array in little endian. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// let value = f16::from_le_bytes([0x40, 0x4A]); /// assert_eq!(value, f16::from_f32(12.5)); /// ``` #[inline] #[must_use] pub const fn from_le_bytes(bytes: [u8; 2]) -> f16 { f16::from_bits(u16::from_le_bytes(bytes)) } /// Creates a floating point value from its representation as a byte array in big endian. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// let value = f16::from_be_bytes([0x4A, 0x40]); /// assert_eq!(value, f16::from_f32(12.5)); /// ``` #[inline] #[must_use] pub const fn from_be_bytes(bytes: [u8; 2]) -> f16 { f16::from_bits(u16::from_be_bytes(bytes)) } /// Creates a floating point value from its representation as a byte array in native endian. /// /// As the target platform's native endianness is used, portable code likely wants to use /// [`from_be_bytes`][Self::from_be_bytes] or [`from_le_bytes`][Self::from_le_bytes], as /// appropriate instead. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big") { /// [0x4A, 0x40] /// } else { /// [0x40, 0x4A] /// }); /// assert_eq!(value, f16::from_f32(12.5)); /// ``` #[inline] #[must_use] pub const fn from_ne_bytes(bytes: [u8; 2]) -> f16 { f16::from_bits(u16::from_ne_bytes(bytes)) } /// Converts a [`f16`] value into a `f32` value. /// /// This conversion is lossless as all 16-bit floating point values can be represented exactly /// in 32-bit floating point. #[inline] #[must_use] pub fn to_f32(self) -> f32 { convert::f16_to_f32(self.0) } /// Converts a [`f16`] value into a `f32` value. /// /// This function is identical to [`to_f32`][Self::to_f32] except it never uses hardware /// intrinsics, which allows it to be `const`. [`to_f32`][Self::to_f32] should be preferred /// in any non-`const` context. /// /// This conversion is lossless as all 16-bit floating point values can be represented exactly /// in 32-bit floating point. #[inline] #[must_use] pub const fn to_f32_const(self) -> f32 { convert::f16_to_f32_fallback(self.0) } /// Converts a [`f16`] value into a `f64` value. /// /// This conversion is lossless as all 16-bit floating point values can be represented exactly /// in 64-bit floating point. #[inline] #[must_use] pub fn to_f64(self) -> f64 { convert::f16_to_f64(self.0) } /// Converts a [`f16`] value into a `f64` value. /// /// This function is identical to [`to_f64`][Self::to_f64] except it never uses hardware /// intrinsics, which allows it to be `const`. [`to_f64`][Self::to_f64] should be preferred /// in any non-`const` context. /// /// This conversion is lossless as all 16-bit floating point values can be represented exactly /// in 64-bit floating point. #[inline] #[must_use] pub const fn to_f64_const(self) -> f64 { convert::f16_to_f64_fallback(self.0) } /// Returns `true` if this value is `NaN` and `false` otherwise. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// /// let nan = f16::NAN; /// let f = f16::from_f32(7.0_f32); /// /// assert!(nan.is_nan()); /// assert!(!f.is_nan()); /// ``` #[inline] #[must_use] pub const fn is_nan(self) -> bool { self.0 & 0x7FFFu16 > 0x7C00u16 } /// Returns `true` if this value is ±∞ and `false`. /// otherwise. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// /// let f = f16::from_f32(7.0f32); /// let inf = f16::INFINITY; /// let neg_inf = f16::NEG_INFINITY; /// let nan = f16::NAN; /// /// assert!(!f.is_infinite()); /// assert!(!nan.is_infinite()); /// /// assert!(inf.is_infinite()); /// assert!(neg_inf.is_infinite()); /// ``` #[inline] #[must_use] pub const fn is_infinite(self) -> bool { self.0 & 0x7FFFu16 == 0x7C00u16 } /// Returns `true` if this number is neither infinite nor `NaN`. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// /// let f = f16::from_f32(7.0f32); /// let inf = f16::INFINITY; /// let neg_inf = f16::NEG_INFINITY; /// let nan = f16::NAN; /// /// assert!(f.is_finite()); /// /// assert!(!nan.is_finite()); /// assert!(!inf.is_finite()); /// assert!(!neg_inf.is_finite()); /// ``` #[inline] #[must_use] pub const fn is_finite(self) -> bool { self.0 & 0x7C00u16 != 0x7C00u16 } /// Returns `true` if the number is neither zero, infinite, subnormal, or `NaN`. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// /// let min = f16::MIN_POSITIVE; /// let max = f16::MAX; /// let lower_than_min = f16::from_f32(1.0e-10_f32); /// let zero = f16::from_f32(0.0_f32); /// /// assert!(min.is_normal()); /// assert!(max.is_normal()); /// /// assert!(!zero.is_normal()); /// assert!(!f16::NAN.is_normal()); /// assert!(!f16::INFINITY.is_normal()); /// // Values between `0` and `min` are Subnormal. /// assert!(!lower_than_min.is_normal()); /// ``` #[inline] #[must_use] pub const fn is_normal(self) -> bool { let exp = self.0 & 0x7C00u16; exp != 0x7C00u16 && exp != 0 } /// Returns the floating point category of the number. /// /// If only one property is going to be tested, it is generally faster to use the specific /// predicate instead. /// /// # Examples /// /// ```rust /// use std::num::FpCategory; /// # use half::prelude::*; /// /// let num = f16::from_f32(12.4_f32); /// let inf = f16::INFINITY; /// /// assert_eq!(num.classify(), FpCategory::Normal); /// assert_eq!(inf.classify(), FpCategory::Infinite); /// ``` #[must_use] pub const fn classify(self) -> FpCategory { let exp = self.0 & 0x7C00u16; let man = self.0 & 0x03FFu16; match (exp, man) { (0, 0) => FpCategory::Zero, (0, _) => FpCategory::Subnormal, (0x7C00u16, 0) => FpCategory::Infinite, (0x7C00u16, _) => FpCategory::Nan, _ => FpCategory::Normal, } } /// Returns a number that represents the sign of `self`. /// /// * `1.0` if the number is positive, `+0.0` or [`INFINITY`][f16::INFINITY] /// * `-1.0` if the number is negative, `-0.0` or [`NEG_INFINITY`][f16::NEG_INFINITY] /// * [`NAN`][f16::NAN] if the number is `NaN` /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// /// let f = f16::from_f32(3.5_f32); /// /// assert_eq!(f.signum(), f16::from_f32(1.0)); /// assert_eq!(f16::NEG_INFINITY.signum(), f16::from_f32(-1.0)); /// /// assert!(f16::NAN.signum().is_nan()); /// ``` #[must_use] pub const fn signum(self) -> f16 { if self.is_nan() { self } else if self.0 & 0x8000u16 != 0 { Self::NEG_ONE } else { Self::ONE } } /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaNs` with a /// positive sign bit and +∞. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// /// let nan = f16::NAN; /// let f = f16::from_f32(7.0_f32); /// let g = f16::from_f32(-7.0_f32); /// /// assert!(f.is_sign_positive()); /// assert!(!g.is_sign_positive()); /// // `NaN` can be either positive or negative /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); /// ``` #[inline] #[must_use] pub const fn is_sign_positive(self) -> bool { self.0 & 0x8000u16 == 0 } /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaNs` with a /// negative sign bit and −∞. /// /// # Examples /// /// ```rust /// # use half::prelude::*; /// /// let nan = f16::NAN; /// let f = f16::from_f32(7.0f32); /// let g = f16::from_f32(-7.0f32); /// /// assert!(!f.is_sign_negative()); /// assert!(g.is_sign_negative()); /// // `NaN` can be either positive or negative /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); /// ``` #[inline] #[must_use] pub const fn is_sign_negative(self) -> bool { self.0 & 0x8000u16 != 0 } /// Returns a number composed of the magnitude of `self` and the sign of `sign`. /// /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`. /// If `self` is NaN, then NaN with the sign of `sign` is returned. /// /// # Examples /// /// ``` /// # use half::prelude::*; /// let f = f16::from_f32(3.5); /// /// assert_eq!(f.copysign(f16::from_f32(0.42)), f16::from_f32(3.5)); /// assert_eq!(f.copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5)); /// assert_eq!((-f).copysign(f16::from_f32(0.42)), f16::from_f32(3.5)); /// assert_eq!((-f).copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5)); /// /// assert!(f16::NAN.copysign(f16::from_f32(1.0)).is_nan()); /// ``` #[inline] #[must_use] pub const fn copysign(self, sign: f16) -> f16 { f16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16)) } /// Returns the maximum of the two numbers. /// /// If one of the arguments is NaN, then the other argument is returned. /// /// # Examples /// /// ``` /// # use half::prelude::*; /// let x = f16::from_f32(1.0); /// let y = f16::from_f32(2.0); /// /// assert_eq!(x.max(y), y); /// ``` #[inline] #[must_use] pub fn max(self, other: f16) -> f16 { if other > self && !other.is_nan() { other } else { self } } /// Returns the minimum of the two numbers. /// /// If one of the arguments is NaN, then the other argument is returned. /// /// # Examples /// /// ``` /// # use half::prelude::*; /// let x = f16::from_f32(1.0); /// let y = f16::from_f32(2.0); /// /// assert_eq!(x.min(y), x); /// ``` #[inline] #[must_use] pub fn min(self, other: f16) -> f16 { if other < self && !other.is_nan() { other } else { self } } /// Restrict a value to a certain interval unless it is NaN. /// /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`. /// Otherwise this returns `self`. /// /// Note that this function returns NaN if the initial value was NaN as well. /// /// # Panics /// Panics if `min > max`, `min` is NaN, or `max` is NaN. /// /// # Examples /// /// ``` /// # use half::prelude::*; /// assert!(f16::from_f32(-3.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(-2.0)); /// assert!(f16::from_f32(0.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(0.0)); /// assert!(f16::from_f32(2.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(1.0)); /// assert!(f16::NAN.clamp(f16::from_f32(-2.0), f16::from_f32(1.0)).is_nan()); /// ``` #[inline] #[must_use] pub fn clamp(self, min: f16, max: f16) -> f16 { assert!(min <= max); let mut x = self; if x < min { x = min; } if x > max { x = max; } x } /// Returns the ordering between `self` and `other`. /// /// Unlike the standard partial comparison between floating point numbers, /// this comparison always produces an ordering in accordance to /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision) /// floating point standard. The values are ordered in the following sequence: /// /// - negative quiet NaN /// - negative signaling NaN /// - negative infinity /// - negative numbers /// - negative subnormal numbers /// - negative zero /// - positive zero /// - positive subnormal numbers /// - positive numbers /// - positive infinity /// - positive signaling NaN /// - positive quiet NaN. /// /// The ordering established by this function does not always agree with the /// [`PartialOrd`] and [`PartialEq`] implementations of `f16`. For example, /// they consider negative and positive zero equal, while `total_cmp` /// doesn't. /// /// The interpretation of the signaling NaN bit follows the definition in /// the IEEE 754 standard, which may not match the interpretation by some of /// the older, non-conformant (e.g. MIPS) hardware implementations. /// /// # Examples /// ``` /// # use half::f16; /// let mut v: Vec = vec![]; /// v.push(f16::ONE); /// v.push(f16::INFINITY); /// v.push(f16::NEG_INFINITY); /// v.push(f16::NAN); /// v.push(f16::MAX_SUBNORMAL); /// v.push(-f16::MAX_SUBNORMAL); /// v.push(f16::ZERO); /// v.push(f16::NEG_ZERO); /// v.push(f16::NEG_ONE); /// v.push(f16::MIN_POSITIVE); /// /// v.sort_by(|a, b| a.total_cmp(&b)); /// /// assert!(v /// .into_iter() /// .zip( /// [ /// f16::NEG_INFINITY, /// f16::NEG_ONE, /// -f16::MAX_SUBNORMAL, /// f16::NEG_ZERO, /// f16::ZERO, /// f16::MAX_SUBNORMAL, /// f16::MIN_POSITIVE, /// f16::ONE, /// f16::INFINITY, /// f16::NAN /// ] /// .iter() /// ) /// .all(|(a, b)| a.to_bits() == b.to_bits())); /// ``` // Implementation based on: https://doc.rust-lang.org/std/primitive.f32.html#method.total_cmp #[inline] #[must_use] pub fn total_cmp(&self, other: &Self) -> Ordering { let mut left = self.to_bits() as i16; let mut right = other.to_bits() as i16; left ^= (((left >> 15) as u16) >> 1) as i16; right ^= (((right >> 15) as u16) >> 1) as i16; left.cmp(&right) } /// Approximate number of [`f16`] significant digits in base 10 pub const DIGITS: u32 = 3; /// [`f16`] /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value /// /// This is the difference between 1.0 and the next largest representable number. pub const EPSILON: f16 = f16(0x1400u16); /// [`f16`] positive Infinity (+∞) pub const INFINITY: f16 = f16(0x7C00u16); /// Number of [`f16`] significant digits in base 2 pub const MANTISSA_DIGITS: u32 = 11; /// Largest finite [`f16`] value pub const MAX: f16 = f16(0x7BFF); /// Maximum possible [`f16`] power of 10 exponent pub const MAX_10_EXP: i32 = 4; /// Maximum possible [`f16`] power of 2 exponent pub const MAX_EXP: i32 = 16; /// Smallest finite [`f16`] value pub const MIN: f16 = f16(0xFBFF); /// Minimum possible normal [`f16`] power of 10 exponent pub const MIN_10_EXP: i32 = -4; /// One greater than the minimum possible normal [`f16`] power of 2 exponent pub const MIN_EXP: i32 = -13; /// Smallest positive normal [`f16`] value pub const MIN_POSITIVE: f16 = f16(0x0400u16); /// [`f16`] Not a Number (NaN) pub const NAN: f16 = f16(0x7E00u16); /// [`f16`] negative infinity (-∞) pub const NEG_INFINITY: f16 = f16(0xFC00u16); /// The radix or base of the internal representation of [`f16`] pub const RADIX: u32 = 2; /// Minimum positive subnormal [`f16`] value pub const MIN_POSITIVE_SUBNORMAL: f16 = f16(0x0001u16); /// Maximum subnormal [`f16`] value pub const MAX_SUBNORMAL: f16 = f16(0x03FFu16); /// [`f16`] 1 pub const ONE: f16 = f16(0x3C00u16); /// [`f16`] 0 pub const ZERO: f16 = f16(0x0000u16); /// [`f16`] -0 pub const NEG_ZERO: f16 = f16(0x8000u16); /// [`f16`] -1 pub const NEG_ONE: f16 = f16(0xBC00u16); /// [`f16`] Euler's number (ℯ) pub const E: f16 = f16(0x4170u16); /// [`f16`] Archimedes' constant (π) pub const PI: f16 = f16(0x4248u16); /// [`f16`] 1/π pub const FRAC_1_PI: f16 = f16(0x3518u16); /// [`f16`] 1/√2 pub const FRAC_1_SQRT_2: f16 = f16(0x39A8u16); /// [`f16`] 2/π pub const FRAC_2_PI: f16 = f16(0x3918u16); /// [`f16`] 2/√π pub const FRAC_2_SQRT_PI: f16 = f16(0x3C83u16); /// [`f16`] π/2 pub const FRAC_PI_2: f16 = f16(0x3E48u16); /// [`f16`] π/3 pub const FRAC_PI_3: f16 = f16(0x3C30u16); /// [`f16`] π/4 pub const FRAC_PI_4: f16 = f16(0x3A48u16); /// [`f16`] π/6 pub const FRAC_PI_6: f16 = f16(0x3830u16); /// [`f16`] π/8 pub const FRAC_PI_8: f16 = f16(0x3648u16); /// [`f16`] 𝗅𝗇 10 pub const LN_10: f16 = f16(0x409Bu16); /// [`f16`] 𝗅𝗇 2 pub const LN_2: f16 = f16(0x398Cu16); /// [`f16`] 𝗅𝗈𝗀₁₀ℯ pub const LOG10_E: f16 = f16(0x36F3u16); /// [`f16`] 𝗅𝗈𝗀₁₀2 pub const LOG10_2: f16 = f16(0x34D1u16); /// [`f16`] 𝗅𝗈𝗀₂ℯ pub const LOG2_E: f16 = f16(0x3DC5u16); /// [`f16`] 𝗅𝗈𝗀₂10 pub const LOG2_10: f16 = f16(0x42A5u16); /// [`f16`] √2 pub const SQRT_2: f16 = f16(0x3DA8u16); } impl From for f32 { #[inline] fn from(x: f16) -> f32 { x.to_f32() } } impl From for f64 { #[inline] fn from(x: f16) -> f64 { x.to_f64() } } impl From for f16 { #[inline] fn from(x: i8) -> f16 { // Convert to f32, then to f16 f16::from_f32(f32::from(x)) } } impl From for f16 { #[inline] fn from(x: u8) -> f16 { // Convert to f32, then to f16 f16::from_f32(f32::from(x)) } } impl PartialEq for f16 { fn eq(&self, other: &f16) -> bool { if self.is_nan() || other.is_nan() { false } else { (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0) } } } impl PartialOrd for f16 { fn partial_cmp(&self, other: &f16) -> Option { if self.is_nan() || other.is_nan() { None } else { let neg = self.0 & 0x8000u16 != 0; let other_neg = other.0 & 0x8000u16 != 0; match (neg, other_neg) { (false, false) => Some(self.0.cmp(&other.0)), (false, true) => { if (self.0 | other.0) & 0x7FFFu16 == 0 { Some(Ordering::Equal) } else { Some(Ordering::Greater) } } (true, false) => { if (self.0 | other.0) & 0x7FFFu16 == 0 { Some(Ordering::Equal) } else { Some(Ordering::Less) } } (true, true) => Some(other.0.cmp(&self.0)), } } } fn lt(&self, other: &f16) -> bool { if self.is_nan() || other.is_nan() { false } else { let neg = self.0 & 0x8000u16 != 0; let other_neg = other.0 & 0x8000u16 != 0; match (neg, other_neg) { (false, false) => self.0 < other.0, (false, true) => false, (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0, (true, true) => self.0 > other.0, } } } fn le(&self, other: &f16) -> bool { if self.is_nan() || other.is_nan() { false } else { let neg = self.0 & 0x8000u16 != 0; let other_neg = other.0 & 0x8000u16 != 0; match (neg, other_neg) { (false, false) => self.0 <= other.0, (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0, (true, false) => true, (true, true) => self.0 >= other.0, } } } fn gt(&self, other: &f16) -> bool { if self.is_nan() || other.is_nan() { false } else { let neg = self.0 & 0x8000u16 != 0; let other_neg = other.0 & 0x8000u16 != 0; match (neg, other_neg) { (false, false) => self.0 > other.0, (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0, (true, false) => false, (true, true) => self.0 < other.0, } } } fn ge(&self, other: &f16) -> bool { if self.is_nan() || other.is_nan() { false } else { let neg = self.0 & 0x8000u16 != 0; let other_neg = other.0 & 0x8000u16 != 0; match (neg, other_neg) { (false, false) => self.0 >= other.0, (false, true) => true, (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0, (true, true) => self.0 <= other.0, } } } } #[cfg(not(target_arch = "spirv"))] impl FromStr for f16 { type Err = ParseFloatError; fn from_str(src: &str) -> Result { f32::from_str(src).map(f16::from_f32) } } #[cfg(not(target_arch = "spirv"))] impl Debug for f16 { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { write!(f, "{:?}", self.to_f32()) } } #[cfg(not(target_arch = "spirv"))] impl Display for f16 { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { write!(f, "{}", self.to_f32()) } } #[cfg(not(target_arch = "spirv"))] impl LowerExp for f16 { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { write!(f, "{:e}", self.to_f32()) } } #[cfg(not(target_arch = "spirv"))] impl UpperExp for f16 { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { write!(f, "{:E}", self.to_f32()) } } #[cfg(not(target_arch = "spirv"))] impl Binary for f16 { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { write!(f, "{:b}", self.0) } } #[cfg(not(target_arch = "spirv"))] impl Octal for f16 { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { write!(f, "{:o}", self.0) } } #[cfg(not(target_arch = "spirv"))] impl LowerHex for f16 { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { write!(f, "{:x}", self.0) } } #[cfg(not(target_arch = "spirv"))] impl UpperHex for f16 { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { write!(f, "{:X}", self.0) } } impl Neg for f16 { type Output = Self; #[inline] fn neg(self) -> Self::Output { Self(self.0 ^ 0x8000) } } impl Neg for &f16 { type Output = ::Output; #[inline] fn neg(self) -> Self::Output { Neg::neg(*self) } } impl Add for f16 { type Output = Self; #[inline] fn add(self, rhs: Self) -> Self::Output { Self::from_f32(Self::to_f32(self) + Self::to_f32(rhs)) } } impl Add<&f16> for f16 { type Output = >::Output; #[inline] fn add(self, rhs: &f16) -> Self::Output { self.add(*rhs) } } impl Add<&f16> for &f16 { type Output = >::Output; #[inline] fn add(self, rhs: &f16) -> Self::Output { (*self).add(*rhs) } } impl Add for &f16 { type Output = >::Output; #[inline] fn add(self, rhs: f16) -> Self::Output { (*self).add(rhs) } } impl AddAssign for f16 { #[inline] fn add_assign(&mut self, rhs: Self) { *self = (*self).add(rhs); } } impl AddAssign<&f16> for f16 { #[inline] fn add_assign(&mut self, rhs: &f16) { *self = (*self).add(rhs); } } impl Sub for f16 { type Output = Self; #[inline] fn sub(self, rhs: Self) -> Self::Output { Self::from_f32(Self::to_f32(self) - Self::to_f32(rhs)) } } impl Sub<&f16> for f16 { type Output = >::Output; #[inline] fn sub(self, rhs: &f16) -> Self::Output { self.sub(*rhs) } } impl Sub<&f16> for &f16 { type Output = >::Output; #[inline] fn sub(self, rhs: &f16) -> Self::Output { (*self).sub(*rhs) } } impl Sub for &f16 { type Output = >::Output; #[inline] fn sub(self, rhs: f16) -> Self::Output { (*self).sub(rhs) } } impl SubAssign for f16 { #[inline] fn sub_assign(&mut self, rhs: Self) { *self = (*self).sub(rhs); } } impl SubAssign<&f16> for f16 { #[inline] fn sub_assign(&mut self, rhs: &f16) { *self = (*self).sub(rhs); } } impl Mul for f16 { type Output = Self; #[inline] fn mul(self, rhs: Self) -> Self::Output { Self::from_f32(Self::to_f32(self) * Self::to_f32(rhs)) } } impl Mul<&f16> for f16 { type Output = >::Output; #[inline] fn mul(self, rhs: &f16) -> Self::Output { self.mul(*rhs) } } impl Mul<&f16> for &f16 { type Output = >::Output; #[inline] fn mul(self, rhs: &f16) -> Self::Output { (*self).mul(*rhs) } } impl Mul for &f16 { type Output = >::Output; #[inline] fn mul(self, rhs: f16) -> Self::Output { (*self).mul(rhs) } } impl MulAssign for f16 { #[inline] fn mul_assign(&mut self, rhs: Self) { *self = (*self).mul(rhs); } } impl MulAssign<&f16> for f16 { #[inline] fn mul_assign(&mut self, rhs: &f16) { *self = (*self).mul(rhs); } } impl Div for f16 { type Output = Self; #[inline] fn div(self, rhs: Self) -> Self::Output { Self::from_f32(Self::to_f32(self) / Self::to_f32(rhs)) } } impl Div<&f16> for f16 { type Output = >::Output; #[inline] fn div(self, rhs: &f16) -> Self::Output { self.div(*rhs) } } impl Div<&f16> for &f16 { type Output = >::Output; #[inline] fn div(self, rhs: &f16) -> Self::Output { (*self).div(*rhs) } } impl Div for &f16 { type Output = >::Output; #[inline] fn div(self, rhs: f16) -> Self::Output { (*self).div(rhs) } } impl DivAssign for f16 { #[inline] fn div_assign(&mut self, rhs: Self) { *self = (*self).div(rhs); } } impl DivAssign<&f16> for f16 { #[inline] fn div_assign(&mut self, rhs: &f16) { *self = (*self).div(rhs); } } impl Rem for f16 { type Output = Self; #[inline] fn rem(self, rhs: Self) -> Self::Output { Self::from_f32(Self::to_f32(self) % Self::to_f32(rhs)) } } impl Rem<&f16> for f16 { type Output = >::Output; #[inline] fn rem(self, rhs: &f16) -> Self::Output { self.rem(*rhs) } } impl Rem<&f16> for &f16 { type Output = >::Output; #[inline] fn rem(self, rhs: &f16) -> Self::Output { (*self).rem(*rhs) } } impl Rem for &f16 { type Output = >::Output; #[inline] fn rem(self, rhs: f16) -> Self::Output { (*self).rem(rhs) } } impl RemAssign for f16 { #[inline] fn rem_assign(&mut self, rhs: Self) { *self = (*self).rem(rhs); } } impl RemAssign<&f16> for f16 { #[inline] fn rem_assign(&mut self, rhs: &f16) { *self = (*self).rem(rhs); } } impl Product for f16 { #[inline] fn product>(iter: I) -> Self { f16::from_f32(iter.map(|f| f.to_f32()).product()) } } impl<'a> Product<&'a f16> for f16 { #[inline] fn product>(iter: I) -> Self { f16::from_f32(iter.map(|f| f.to_f32()).product()) } } impl Sum for f16 { #[inline] fn sum>(iter: I) -> Self { f16::from_f32(iter.map(|f| f.to_f32()).sum()) } } impl<'a> Sum<&'a f16> for f16 { #[inline] fn sum>(iter: I) -> Self { f16::from_f32(iter.map(|f| f.to_f32()).product()) } } #[allow( clippy::cognitive_complexity, clippy::float_cmp, clippy::neg_cmp_op_on_partial_ord )] #[cfg(test)] mod test { use super::*; use core::cmp::Ordering; #[cfg(feature = "num-traits")] use num_traits::{AsPrimitive, FromPrimitive, ToPrimitive}; use quickcheck_macros::quickcheck; #[cfg(feature = "num-traits")] #[test] fn as_primitive() { let two = f16::from_f32(2.0); assert_eq!(>::as_(2), two); assert_eq!(>::as_(two), 2); assert_eq!(>::as_(2.0), two); assert_eq!(>::as_(two), 2.0); assert_eq!(>::as_(2.0), two); assert_eq!(>::as_(two), 2.0); } #[cfg(feature = "num-traits")] #[test] fn to_primitive() { let two = f16::from_f32(2.0); assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32); assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32); assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64); } #[cfg(feature = "num-traits")] #[test] fn from_primitive() { let two = f16::from_f32(2.0); assert_eq!(::from_i32(2).unwrap(), two); assert_eq!(::from_f32(2.0).unwrap(), two); assert_eq!(::from_f64(2.0).unwrap(), two); } #[test] fn test_f16_consts() { // DIGITS let digits = ((f16::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32; assert_eq!(f16::DIGITS, digits); // sanity check to show test is good let digits32 = ((core::f32::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32; assert_eq!(core::f32::DIGITS, digits32); // EPSILON let one = f16::from_f32(1.0); let one_plus_epsilon = f16::from_bits(one.to_bits() + 1); let epsilon = f16::from_f32(one_plus_epsilon.to_f32() - 1.0); assert_eq!(f16::EPSILON, epsilon); // sanity check to show test is good let one_plus_epsilon32 = f32::from_bits(1.0f32.to_bits() + 1); let epsilon32 = one_plus_epsilon32 - 1f32; assert_eq!(core::f32::EPSILON, epsilon32); // MAX, MIN and MIN_POSITIVE let max = f16::from_bits(f16::INFINITY.to_bits() - 1); let min = f16::from_bits(f16::NEG_INFINITY.to_bits() - 1); let min_pos = f16::from_f32(2f32.powi(f16::MIN_EXP - 1)); assert_eq!(f16::MAX, max); assert_eq!(f16::MIN, min); assert_eq!(f16::MIN_POSITIVE, min_pos); // sanity check to show test is good let max32 = f32::from_bits(core::f32::INFINITY.to_bits() - 1); let min32 = f32::from_bits(core::f32::NEG_INFINITY.to_bits() - 1); let min_pos32 = 2f32.powi(core::f32::MIN_EXP - 1); assert_eq!(core::f32::MAX, max32); assert_eq!(core::f32::MIN, min32); assert_eq!(core::f32::MIN_POSITIVE, min_pos32); // MIN_10_EXP and MAX_10_EXP let ten_to_min = 10f32.powi(f16::MIN_10_EXP); assert!(ten_to_min / 10.0 < f16::MIN_POSITIVE.to_f32()); assert!(ten_to_min > f16::MIN_POSITIVE.to_f32()); let ten_to_max = 10f32.powi(f16::MAX_10_EXP); assert!(ten_to_max < f16::MAX.to_f32()); assert!(ten_to_max * 10.0 > f16::MAX.to_f32()); // sanity check to show test is good let ten_to_min32 = 10f64.powi(core::f32::MIN_10_EXP); assert!(ten_to_min32 / 10.0 < f64::from(core::f32::MIN_POSITIVE)); assert!(ten_to_min32 > f64::from(core::f32::MIN_POSITIVE)); let ten_to_max32 = 10f64.powi(core::f32::MAX_10_EXP); assert!(ten_to_max32 < f64::from(core::f32::MAX)); assert!(ten_to_max32 * 10.0 > f64::from(core::f32::MAX)); } #[test] fn test_f16_consts_from_f32() { let one = f16::from_f32(1.0); let zero = f16::from_f32(0.0); let neg_zero = f16::from_f32(-0.0); let neg_one = f16::from_f32(-1.0); let inf = f16::from_f32(core::f32::INFINITY); let neg_inf = f16::from_f32(core::f32::NEG_INFINITY); let nan = f16::from_f32(core::f32::NAN); assert_eq!(f16::ONE, one); assert_eq!(f16::ZERO, zero); assert!(zero.is_sign_positive()); assert_eq!(f16::NEG_ZERO, neg_zero); assert!(neg_zero.is_sign_negative()); assert_eq!(f16::NEG_ONE, neg_one); assert!(neg_one.is_sign_negative()); assert_eq!(f16::INFINITY, inf); assert_eq!(f16::NEG_INFINITY, neg_inf); assert!(nan.is_nan()); assert!(f16::NAN.is_nan()); let e = f16::from_f32(core::f32::consts::E); let pi = f16::from_f32(core::f32::consts::PI); let frac_1_pi = f16::from_f32(core::f32::consts::FRAC_1_PI); let frac_1_sqrt_2 = f16::from_f32(core::f32::consts::FRAC_1_SQRT_2); let frac_2_pi = f16::from_f32(core::f32::consts::FRAC_2_PI); let frac_2_sqrt_pi = f16::from_f32(core::f32::consts::FRAC_2_SQRT_PI); let frac_pi_2 = f16::from_f32(core::f32::consts::FRAC_PI_2); let frac_pi_3 = f16::from_f32(core::f32::consts::FRAC_PI_3); let frac_pi_4 = f16::from_f32(core::f32::consts::FRAC_PI_4); let frac_pi_6 = f16::from_f32(core::f32::consts::FRAC_PI_6); let frac_pi_8 = f16::from_f32(core::f32::consts::FRAC_PI_8); let ln_10 = f16::from_f32(core::f32::consts::LN_10); let ln_2 = f16::from_f32(core::f32::consts::LN_2); let log10_e = f16::from_f32(core::f32::consts::LOG10_E); // core::f32::consts::LOG10_2 requires rustc 1.43.0 let log10_2 = f16::from_f32(2f32.log10()); let log2_e = f16::from_f32(core::f32::consts::LOG2_E); // core::f32::consts::LOG2_10 requires rustc 1.43.0 let log2_10 = f16::from_f32(10f32.log2()); let sqrt_2 = f16::from_f32(core::f32::consts::SQRT_2); assert_eq!(f16::E, e); assert_eq!(f16::PI, pi); assert_eq!(f16::FRAC_1_PI, frac_1_pi); assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2); assert_eq!(f16::FRAC_2_PI, frac_2_pi); assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); assert_eq!(f16::FRAC_PI_2, frac_pi_2); assert_eq!(f16::FRAC_PI_3, frac_pi_3); assert_eq!(f16::FRAC_PI_4, frac_pi_4); assert_eq!(f16::FRAC_PI_6, frac_pi_6); assert_eq!(f16::FRAC_PI_8, frac_pi_8); assert_eq!(f16::LN_10, ln_10); assert_eq!(f16::LN_2, ln_2); assert_eq!(f16::LOG10_E, log10_e); assert_eq!(f16::LOG10_2, log10_2); assert_eq!(f16::LOG2_E, log2_e); assert_eq!(f16::LOG2_10, log2_10); assert_eq!(f16::SQRT_2, sqrt_2); } #[test] fn test_f16_consts_from_f64() { let one = f16::from_f64(1.0); let zero = f16::from_f64(0.0); let neg_zero = f16::from_f64(-0.0); let inf = f16::from_f64(core::f64::INFINITY); let neg_inf = f16::from_f64(core::f64::NEG_INFINITY); let nan = f16::from_f64(core::f64::NAN); assert_eq!(f16::ONE, one); assert_eq!(f16::ZERO, zero); assert!(zero.is_sign_positive()); assert_eq!(f16::NEG_ZERO, neg_zero); assert!(neg_zero.is_sign_negative()); assert_eq!(f16::INFINITY, inf); assert_eq!(f16::NEG_INFINITY, neg_inf); assert!(nan.is_nan()); assert!(f16::NAN.is_nan()); let e = f16::from_f64(core::f64::consts::E); let pi = f16::from_f64(core::f64::consts::PI); let frac_1_pi = f16::from_f64(core::f64::consts::FRAC_1_PI); let frac_1_sqrt_2 = f16::from_f64(core::f64::consts::FRAC_1_SQRT_2); let frac_2_pi = f16::from_f64(core::f64::consts::FRAC_2_PI); let frac_2_sqrt_pi = f16::from_f64(core::f64::consts::FRAC_2_SQRT_PI); let frac_pi_2 = f16::from_f64(core::f64::consts::FRAC_PI_2); let frac_pi_3 = f16::from_f64(core::f64::consts::FRAC_PI_3); let frac_pi_4 = f16::from_f64(core::f64::consts::FRAC_PI_4); let frac_pi_6 = f16::from_f64(core::f64::consts::FRAC_PI_6); let frac_pi_8 = f16::from_f64(core::f64::consts::FRAC_PI_8); let ln_10 = f16::from_f64(core::f64::consts::LN_10); let ln_2 = f16::from_f64(core::f64::consts::LN_2); let log10_e = f16::from_f64(core::f64::consts::LOG10_E); // core::f64::consts::LOG10_2 requires rustc 1.43.0 let log10_2 = f16::from_f64(2f64.log10()); let log2_e = f16::from_f64(core::f64::consts::LOG2_E); // core::f64::consts::LOG2_10 requires rustc 1.43.0 let log2_10 = f16::from_f64(10f64.log2()); let sqrt_2 = f16::from_f64(core::f64::consts::SQRT_2); assert_eq!(f16::E, e); assert_eq!(f16::PI, pi); assert_eq!(f16::FRAC_1_PI, frac_1_pi); assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2); assert_eq!(f16::FRAC_2_PI, frac_2_pi); assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); assert_eq!(f16::FRAC_PI_2, frac_pi_2); assert_eq!(f16::FRAC_PI_3, frac_pi_3); assert_eq!(f16::FRAC_PI_4, frac_pi_4); assert_eq!(f16::FRAC_PI_6, frac_pi_6); assert_eq!(f16::FRAC_PI_8, frac_pi_8); assert_eq!(f16::LN_10, ln_10); assert_eq!(f16::LN_2, ln_2); assert_eq!(f16::LOG10_E, log10_e); assert_eq!(f16::LOG10_2, log10_2); assert_eq!(f16::LOG2_E, log2_e); assert_eq!(f16::LOG2_10, log2_10); assert_eq!(f16::SQRT_2, sqrt_2); } #[test] fn test_nan_conversion_to_smaller() { let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64); let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64); let nan32 = f32::from_bits(0x7F80_0001u32); let neg_nan32 = f32::from_bits(0xFF80_0001u32); let nan32_from_64 = nan64 as f32; let neg_nan32_from_64 = neg_nan64 as f32; let nan16_from_64 = f16::from_f64(nan64); let neg_nan16_from_64 = f16::from_f64(neg_nan64); let nan16_from_32 = f16::from_f32(nan32); let neg_nan16_from_32 = f16::from_f32(neg_nan32); assert!(nan64.is_nan() && nan64.is_sign_positive()); assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative()); assert!(nan32.is_nan() && nan32.is_sign_positive()); assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); assert!(nan32_from_64.is_nan() && nan32_from_64.is_sign_positive()); assert!(neg_nan32_from_64.is_nan() && neg_nan32_from_64.is_sign_negative()); assert!(nan16_from_64.is_nan() && nan16_from_64.is_sign_positive()); assert!(neg_nan16_from_64.is_nan() && neg_nan16_from_64.is_sign_negative()); assert!(nan16_from_32.is_nan() && nan16_from_32.is_sign_positive()); assert!(neg_nan16_from_32.is_nan() && neg_nan16_from_32.is_sign_negative()); } #[test] fn test_nan_conversion_to_larger() { let nan16 = f16::from_bits(0x7C01u16); let neg_nan16 = f16::from_bits(0xFC01u16); let nan32 = f32::from_bits(0x7F80_0001u32); let neg_nan32 = f32::from_bits(0xFF80_0001u32); let nan32_from_16 = f32::from(nan16); let neg_nan32_from_16 = f32::from(neg_nan16); let nan64_from_16 = f64::from(nan16); let neg_nan64_from_16 = f64::from(neg_nan16); let nan64_from_32 = f64::from(nan32); let neg_nan64_from_32 = f64::from(neg_nan32); assert!(nan16.is_nan() && nan16.is_sign_positive()); assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative()); assert!(nan32.is_nan() && nan32.is_sign_positive()); assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); assert!(nan32_from_16.is_nan() && nan32_from_16.is_sign_positive()); assert!(neg_nan32_from_16.is_nan() && neg_nan32_from_16.is_sign_negative()); assert!(nan64_from_16.is_nan() && nan64_from_16.is_sign_positive()); assert!(neg_nan64_from_16.is_nan() && neg_nan64_from_16.is_sign_negative()); assert!(nan64_from_32.is_nan() && nan64_from_32.is_sign_positive()); assert!(neg_nan64_from_32.is_nan() && neg_nan64_from_32.is_sign_negative()); } #[test] fn test_f16_to_f32() { let f = f16::from_f32(7.0); assert_eq!(f.to_f32(), 7.0f32); // 7.1 is NOT exactly representable in 16-bit, it's rounded let f = f16::from_f32(7.1); let diff = (f.to_f32() - 7.1f32).abs(); // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 assert!(diff <= 4.0 * f16::EPSILON.to_f32()); assert_eq!(f16::from_bits(0x0000_0001).to_f32(), 2.0f32.powi(-24)); assert_eq!(f16::from_bits(0x0000_0005).to_f32(), 5.0 * 2.0f32.powi(-24)); assert_eq!(f16::from_bits(0x0000_0001), f16::from_f32(2.0f32.powi(-24))); assert_eq!( f16::from_bits(0x0000_0005), f16::from_f32(5.0 * 2.0f32.powi(-24)) ); } #[test] fn test_f16_to_f64() { let f = f16::from_f64(7.0); assert_eq!(f.to_f64(), 7.0f64); // 7.1 is NOT exactly representable in 16-bit, it's rounded let f = f16::from_f64(7.1); let diff = (f.to_f64() - 7.1f64).abs(); // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 assert!(diff <= 4.0 * f16::EPSILON.to_f64()); assert_eq!(f16::from_bits(0x0000_0001).to_f64(), 2.0f64.powi(-24)); assert_eq!(f16::from_bits(0x0000_0005).to_f64(), 5.0 * 2.0f64.powi(-24)); assert_eq!(f16::from_bits(0x0000_0001), f16::from_f64(2.0f64.powi(-24))); assert_eq!( f16::from_bits(0x0000_0005), f16::from_f64(5.0 * 2.0f64.powi(-24)) ); } #[test] fn test_comparisons() { let zero = f16::from_f64(0.0); let one = f16::from_f64(1.0); let neg_zero = f16::from_f64(-0.0); let neg_one = f16::from_f64(-1.0); assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal)); assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal)); assert!(zero == neg_zero); assert!(neg_zero == zero); assert!(!(zero != neg_zero)); assert!(!(neg_zero != zero)); assert!(!(zero < neg_zero)); assert!(!(neg_zero < zero)); assert!(zero <= neg_zero); assert!(neg_zero <= zero); assert!(!(zero > neg_zero)); assert!(!(neg_zero > zero)); assert!(zero >= neg_zero); assert!(neg_zero >= zero); assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater)); assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less)); assert!(!(one == neg_zero)); assert!(!(neg_zero == one)); assert!(one != neg_zero); assert!(neg_zero != one); assert!(!(one < neg_zero)); assert!(neg_zero < one); assert!(!(one <= neg_zero)); assert!(neg_zero <= one); assert!(one > neg_zero); assert!(!(neg_zero > one)); assert!(one >= neg_zero); assert!(!(neg_zero >= one)); assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater)); assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less)); assert!(!(one == neg_one)); assert!(!(neg_one == one)); assert!(one != neg_one); assert!(neg_one != one); assert!(!(one < neg_one)); assert!(neg_one < one); assert!(!(one <= neg_one)); assert!(neg_one <= one); assert!(one > neg_one); assert!(!(neg_one > one)); assert!(one >= neg_one); assert!(!(neg_one >= one)); } #[test] #[allow(clippy::erasing_op, clippy::identity_op)] fn round_to_even_f32() { // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24 let min_sub = f16::from_bits(1); let min_sub_f = (-24f32).exp2(); assert_eq!(f16::from_f32(min_sub_f).to_bits(), min_sub.to_bits()); assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits()); // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding) // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even) // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up) assert_eq!( f16::from_f32(min_sub_f * 0.49).to_bits(), min_sub.to_bits() * 0 ); assert_eq!( f16::from_f32(min_sub_f * 0.50).to_bits(), min_sub.to_bits() * 0 ); assert_eq!( f16::from_f32(min_sub_f * 0.51).to_bits(), min_sub.to_bits() * 1 ); // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding) // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even) // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up) assert_eq!( f16::from_f32(min_sub_f * 1.49).to_bits(), min_sub.to_bits() * 1 ); assert_eq!( f16::from_f32(min_sub_f * 1.50).to_bits(), min_sub.to_bits() * 2 ); assert_eq!( f16::from_f32(min_sub_f * 1.51).to_bits(), min_sub.to_bits() * 2 ); // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding) // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even) // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up) assert_eq!( f16::from_f32(min_sub_f * 2.49).to_bits(), min_sub.to_bits() * 2 ); assert_eq!( f16::from_f32(min_sub_f * 2.50).to_bits(), min_sub.to_bits() * 2 ); assert_eq!( f16::from_f32(min_sub_f * 2.51).to_bits(), min_sub.to_bits() * 3 ); assert_eq!( f16::from_f32(2000.49f32).to_bits(), f16::from_f32(2000.0).to_bits() ); assert_eq!( f16::from_f32(2000.50f32).to_bits(), f16::from_f32(2000.0).to_bits() ); assert_eq!( f16::from_f32(2000.51f32).to_bits(), f16::from_f32(2001.0).to_bits() ); assert_eq!( f16::from_f32(2001.49f32).to_bits(), f16::from_f32(2001.0).to_bits() ); assert_eq!( f16::from_f32(2001.50f32).to_bits(), f16::from_f32(2002.0).to_bits() ); assert_eq!( f16::from_f32(2001.51f32).to_bits(), f16::from_f32(2002.0).to_bits() ); assert_eq!( f16::from_f32(2002.49f32).to_bits(), f16::from_f32(2002.0).to_bits() ); assert_eq!( f16::from_f32(2002.50f32).to_bits(), f16::from_f32(2002.0).to_bits() ); assert_eq!( f16::from_f32(2002.51f32).to_bits(), f16::from_f32(2003.0).to_bits() ); } #[test] #[allow(clippy::erasing_op, clippy::identity_op)] fn round_to_even_f64() { // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24 let min_sub = f16::from_bits(1); let min_sub_f = (-24f64).exp2(); assert_eq!(f16::from_f64(min_sub_f).to_bits(), min_sub.to_bits()); assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits()); // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding) // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even) // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up) assert_eq!( f16::from_f64(min_sub_f * 0.49).to_bits(), min_sub.to_bits() * 0 ); assert_eq!( f16::from_f64(min_sub_f * 0.50).to_bits(), min_sub.to_bits() * 0 ); assert_eq!( f16::from_f64(min_sub_f * 0.51).to_bits(), min_sub.to_bits() * 1 ); // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding) // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even) // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up) assert_eq!( f16::from_f64(min_sub_f * 1.49).to_bits(), min_sub.to_bits() * 1 ); assert_eq!( f16::from_f64(min_sub_f * 1.50).to_bits(), min_sub.to_bits() * 2 ); assert_eq!( f16::from_f64(min_sub_f * 1.51).to_bits(), min_sub.to_bits() * 2 ); // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding) // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even) // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up) assert_eq!( f16::from_f64(min_sub_f * 2.49).to_bits(), min_sub.to_bits() * 2 ); assert_eq!( f16::from_f64(min_sub_f * 2.50).to_bits(), min_sub.to_bits() * 2 ); assert_eq!( f16::from_f64(min_sub_f * 2.51).to_bits(), min_sub.to_bits() * 3 ); assert_eq!( f16::from_f64(2000.49f64).to_bits(), f16::from_f64(2000.0).to_bits() ); assert_eq!( f16::from_f64(2000.50f64).to_bits(), f16::from_f64(2000.0).to_bits() ); assert_eq!( f16::from_f64(2000.51f64).to_bits(), f16::from_f64(2001.0).to_bits() ); assert_eq!( f16::from_f64(2001.49f64).to_bits(), f16::from_f64(2001.0).to_bits() ); assert_eq!( f16::from_f64(2001.50f64).to_bits(), f16::from_f64(2002.0).to_bits() ); assert_eq!( f16::from_f64(2001.51f64).to_bits(), f16::from_f64(2002.0).to_bits() ); assert_eq!( f16::from_f64(2002.49f64).to_bits(), f16::from_f64(2002.0).to_bits() ); assert_eq!( f16::from_f64(2002.50f64).to_bits(), f16::from_f64(2002.0).to_bits() ); assert_eq!( f16::from_f64(2002.51f64).to_bits(), f16::from_f64(2003.0).to_bits() ); } impl quickcheck::Arbitrary for f16 { fn arbitrary(g: &mut quickcheck::Gen) -> Self { f16(u16::arbitrary(g)) } } #[quickcheck] fn qc_roundtrip_f16_f32_is_identity(f: f16) -> bool { let roundtrip = f16::from_f32(f.to_f32()); if f.is_nan() { roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() } else { f.0 == roundtrip.0 } } #[quickcheck] fn qc_roundtrip_f16_f64_is_identity(f: f16) -> bool { let roundtrip = f16::from_f64(f.to_f64()); if f.is_nan() { roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() } else { f.0 == roundtrip.0 } } }