Files
denyhosts/clamav/libclamav_rust/.cargo/vendor/jpeg-decoder/src/decoder.rs
2023-01-14 18:28:39 +08:00

1494 lines
55 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use crate::error::{Error, Result, UnsupportedFeature};
use crate::huffman::{fill_default_mjpeg_tables, HuffmanDecoder, HuffmanTable};
use crate::marker::Marker;
use crate::parser::{
parse_app, parse_com, parse_dht, parse_dqt, parse_dri, parse_sof, parse_sos,
AdobeColorTransform, AppData, CodingProcess, Component, Dimensions, EntropyCoding, FrameInfo,
IccChunk, ScanInfo,
};
use crate::read_u8;
use crate::upsampler::Upsampler;
use crate::worker::{compute_image_parallel, PreferWorkerKind, RowData, Worker, WorkerScope};
use alloc::borrow::ToOwned;
use alloc::sync::Arc;
use alloc::vec::Vec;
use alloc::{format, vec};
use core::cmp;
use core::mem;
use core::ops::Range;
use std::convert::TryInto;
use std::io::Read;
pub const MAX_COMPONENTS: usize = 4;
mod lossless;
use self::lossless::compute_image_lossless;
#[cfg_attr(rustfmt, rustfmt_skip)]
static UNZIGZAG: [u8; 64] = [
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
];
/// An enumeration over combinations of color spaces and bit depths a pixel can have.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum PixelFormat {
/// Luminance (grayscale), 8 bits
L8,
/// Luminance (grayscale), 16 bits
L16,
/// RGB, 8 bits per channel
RGB24,
/// CMYK, 8 bits per channel
CMYK32,
}
impl PixelFormat {
/// Determine the size in bytes of each pixel in this format
pub fn pixel_bytes(&self) -> usize {
match self {
PixelFormat::L8 => 1,
PixelFormat::L16 => 2,
PixelFormat::RGB24 => 3,
PixelFormat::CMYK32 => 4,
}
}
}
/// Represents metadata of an image.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct ImageInfo {
/// The width of the image, in pixels.
pub width: u16,
/// The height of the image, in pixels.
pub height: u16,
/// The pixel format of the image.
pub pixel_format: PixelFormat,
/// The coding process of the image.
pub coding_process: CodingProcess,
}
/// Describes the colour transform to apply before binary data is returned
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum ColorTransform {
/// No transform should be applied and the data is returned as-is.
None,
/// Unknown colour transformation
Unknown,
/// Grayscale transform should be applied (expects 1 channel)
Grayscale,
/// RGB transform should be applied.
RGB,
/// YCbCr transform should be applied.
YCbCr,
/// CMYK transform should be applied.
CMYK,
/// YCCK transform should be applied.
YCCK,
/// big gamut Y/Cb/Cr, bg-sYCC
JcsBgYcc,
/// big gamut red/green/blue, bg-sRGB
JcsBgRgb,
}
/// JPEG decoder
pub struct Decoder<R> {
reader: R,
frame: Option<FrameInfo>,
dc_huffman_tables: Vec<Option<HuffmanTable>>,
ac_huffman_tables: Vec<Option<HuffmanTable>>,
quantization_tables: [Option<Arc<[u16; 64]>>; 4],
restart_interval: u16,
adobe_color_transform: Option<AdobeColorTransform>,
color_transform: Option<ColorTransform>,
is_jfif: bool,
is_mjpeg: bool,
icc_markers: Vec<IccChunk>,
exif_data: Option<Vec<u8>>,
// Used for progressive JPEGs.
coefficients: Vec<Vec<i16>>,
// Bitmask of which coefficients has been completely decoded.
coefficients_finished: [u64; MAX_COMPONENTS],
// Maximum allowed size of decoded image buffer
decoding_buffer_size_limit: usize,
}
impl<R: Read> Decoder<R> {
/// Creates a new `Decoder` using the reader `reader`.
pub fn new(reader: R) -> Decoder<R> {
Decoder {
reader,
frame: None,
dc_huffman_tables: vec![None, None, None, None],
ac_huffman_tables: vec![None, None, None, None],
quantization_tables: [None, None, None, None],
restart_interval: 0,
adobe_color_transform: None,
color_transform: None,
is_jfif: false,
is_mjpeg: false,
icc_markers: Vec::new(),
exif_data: None,
coefficients: Vec::new(),
coefficients_finished: [0; MAX_COMPONENTS],
decoding_buffer_size_limit: usize::MAX,
}
}
/// Colour transform to use when decoding the image. App segments relating to colour transforms
/// will be ignored.
pub fn set_color_transform(&mut self, transform: ColorTransform) {
self.color_transform = Some(transform);
}
/// Set maximum buffer size allowed for decoded images
pub fn set_max_decoding_buffer_size(&mut self, max: usize) {
self.decoding_buffer_size_limit = max;
}
/// Returns metadata about the image.
///
/// The returned value will be `None` until a call to either `read_info` or `decode` has
/// returned `Ok`.
pub fn info(&self) -> Option<ImageInfo> {
match self.frame {
Some(ref frame) => {
let pixel_format = match frame.components.len() {
1 => match frame.precision {
8 => PixelFormat::L8,
16 => PixelFormat::L16,
_ => panic!(),
},
3 => PixelFormat::RGB24,
4 => PixelFormat::CMYK32,
_ => panic!(),
};
Some(ImageInfo {
width: frame.output_size.width,
height: frame.output_size.height,
pixel_format,
coding_process: frame.coding_process,
})
}
None => None,
}
}
/// Returns raw exif data, starting at the TIFF header, if the image contains any.
///
/// The returned value will be `None` until a call to `decode` has returned `Ok`.
pub fn exif_data(&self) -> Option<&[u8]> {
self.exif_data.as_deref()
}
/// Returns the embeded icc profile if the image contains one.
pub fn icc_profile(&self) -> Option<Vec<u8>> {
let mut marker_present: [Option<&IccChunk>; 256] = [None; 256];
let num_markers = self.icc_markers.len();
if num_markers == 0 || num_markers >= 255 {
return None;
}
// check the validity of the markers
for chunk in &self.icc_markers {
if usize::from(chunk.num_markers) != num_markers {
// all the lengths must match
return None;
}
if chunk.seq_no == 0 {
return None;
}
if marker_present[usize::from(chunk.seq_no)].is_some() {
// duplicate seq_no
return None;
} else {
marker_present[usize::from(chunk.seq_no)] = Some(chunk);
}
}
// assemble them together by seq_no failing if any are missing
let mut data = Vec::new();
// seq_no's start at 1
for &chunk in marker_present.get(1..=num_markers)? {
data.extend_from_slice(&chunk?.data);
}
Some(data)
}
/// Heuristic to avoid starting thread, synchronization if we expect a small amount of
/// parallelism to be utilized.
fn select_worker(frame: &FrameInfo, worker_preference: PreferWorkerKind) -> PreferWorkerKind {
const PARALLELISM_THRESHOLD: u64 = 128 * 128;
match worker_preference {
PreferWorkerKind::Immediate => PreferWorkerKind::Immediate,
PreferWorkerKind::Multithreaded => {
let width: u64 = frame.output_size.width.into();
let height: u64 = frame.output_size.width.into();
if width * height > PARALLELISM_THRESHOLD {
PreferWorkerKind::Multithreaded
} else {
PreferWorkerKind::Immediate
}
}
}
}
/// Tries to read metadata from the image without decoding it.
///
/// If successful, the metadata can be obtained using the `info` method.
pub fn read_info(&mut self) -> Result<()> {
WorkerScope::with(|worker| self.decode_internal(true, worker)).map(|_| ())
}
/// Configure the decoder to scale the image during decoding.
///
/// This efficiently scales the image by the smallest supported scale
/// factor that produces an image larger than or equal to the requested
/// size in at least one axis. The currently implemented scale factors
/// are 1/8, 1/4, 1/2 and 1.
///
/// To generate a thumbnail of an exact size, pass the desired size and
/// then scale to the final size using a traditional resampling algorithm.
pub fn scale(&mut self, requested_width: u16, requested_height: u16) -> Result<(u16, u16)> {
self.read_info()?;
let frame = self.frame.as_mut().unwrap();
let idct_size = crate::idct::choose_idct_size(
frame.image_size,
Dimensions {
width: requested_width,
height: requested_height,
},
);
frame.update_idct_size(idct_size)?;
Ok((frame.output_size.width, frame.output_size.height))
}
/// Decodes the image and returns the decoded pixels if successful.
pub fn decode(&mut self) -> Result<Vec<u8>> {
WorkerScope::with(|worker| self.decode_internal(false, worker))
}
fn decode_internal(
&mut self,
stop_after_metadata: bool,
worker_scope: &WorkerScope,
) -> Result<Vec<u8>> {
if stop_after_metadata && self.frame.is_some() {
// The metadata has already been read.
return Ok(Vec::new());
} else if self.frame.is_none()
&& (read_u8(&mut self.reader)? != 0xFF
|| Marker::from_u8(read_u8(&mut self.reader)?) != Some(Marker::SOI))
{
return Err(Error::Format(
"first two bytes are not an SOI marker".to_owned(),
));
}
let mut previous_marker = Marker::SOI;
let mut pending_marker = None;
let mut scans_processed = 0;
let mut planes = vec![
Vec::<u8>::new();
self.frame
.as_ref()
.map_or(0, |frame| frame.components.len())
];
let mut planes_u16 = vec![
Vec::<u16>::new();
self.frame
.as_ref()
.map_or(0, |frame| frame.components.len())
];
loop {
let marker = match pending_marker.take() {
Some(m) => m,
None => self.read_marker()?,
};
match marker {
// Frame header
Marker::SOF(..) => {
// Section 4.10
// "An image contains only one frame in the cases of sequential and
// progressive coding processes; an image contains multiple frames for the
// hierarchical mode."
if self.frame.is_some() {
return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
}
let frame = parse_sof(&mut self.reader, marker)?;
let component_count = frame.components.len();
if frame.is_differential {
return Err(Error::Unsupported(UnsupportedFeature::Hierarchical));
}
if frame.entropy_coding == EntropyCoding::Arithmetic {
return Err(Error::Unsupported(
UnsupportedFeature::ArithmeticEntropyCoding,
));
}
if frame.precision != 8 && frame.coding_process != CodingProcess::Lossless {
return Err(Error::Unsupported(UnsupportedFeature::SamplePrecision(
frame.precision,
)));
}
if frame.precision != 8 && frame.precision != 16 {
return Err(Error::Unsupported(UnsupportedFeature::SamplePrecision(
frame.precision,
)));
}
if component_count != 1 && component_count != 3 && component_count != 4 {
return Err(Error::Unsupported(UnsupportedFeature::ComponentCount(
component_count as u8,
)));
}
// Make sure we support the subsampling ratios used.
let _ = Upsampler::new(
&frame.components,
frame.image_size.width,
frame.image_size.height,
)?;
self.frame = Some(frame);
if stop_after_metadata {
return Ok(Vec::new());
}
planes = vec![Vec::new(); component_count];
planes_u16 = vec![Vec::new(); component_count];
}
// Scan header
Marker::SOS => {
if self.frame.is_none() {
return Err(Error::Format("scan encountered before frame".to_owned()));
}
let frame = self.frame.clone().unwrap();
let scan = parse_sos(&mut self.reader, &frame)?;
if frame.coding_process == CodingProcess::DctProgressive
&& self.coefficients.is_empty()
{
self.coefficients = frame
.components
.iter()
.map(|c| {
let block_count =
c.block_size.width as usize * c.block_size.height as usize;
vec![0; block_count * 64]
})
.collect();
}
if frame.coding_process == CodingProcess::Lossless {
let (marker, data) = self.decode_scan_lossless(&frame, &scan)?;
for (i, plane) in data
.into_iter()
.enumerate()
.filter(|&(_, ref plane)| !plane.is_empty())
{
planes_u16[i] = plane;
}
pending_marker = marker;
} else {
// This was previously buggy, so let's explain the log here a bit. When a
// progressive frame is encoded then the coefficients (DC, AC) of each
// component (=color plane) can be split amongst scans. In particular it can
// happen or at least occurs in the wild that a scan contains coefficient 0 of
// all components. If now one but not all components had all other coefficients
// delivered in previous scans then such a scan contains all components but
// completes only some of them! (This is technically NOT permitted for all
// other coefficients as the standard dictates that scans with coefficients
// other than the 0th must only contain ONE component so we would either
// complete it or not. We may want to detect and error in case more component
// are part of a scan than allowed.) What a weird edge case.
//
// But this means we track precisely which components get completed here.
let mut finished = [false; MAX_COMPONENTS];
if scan.successive_approximation_low == 0 {
for (&i, component_finished) in
scan.component_indices.iter().zip(&mut finished)
{
if self.coefficients_finished[i] == !0 {
continue;
}
for j in scan.spectral_selection.clone() {
self.coefficients_finished[i] |= 1 << j;
}
if self.coefficients_finished[i] == !0 {
*component_finished = true;
}
}
}
let preference =
Self::select_worker(&frame, PreferWorkerKind::Multithreaded);
let (marker, data) = worker_scope
.get_or_init_worker(preference, |worker| {
self.decode_scan(&frame, &scan, worker, &finished)
})?;
if let Some(data) = data {
for (i, plane) in data
.into_iter()
.enumerate()
.filter(|&(_, ref plane)| !plane.is_empty())
{
if self.coefficients_finished[i] == !0 {
planes[i] = plane;
}
}
}
pending_marker = marker;
}
scans_processed += 1;
}
// Table-specification and miscellaneous markers
// Quantization table-specification
Marker::DQT => {
let tables = parse_dqt(&mut self.reader)?;
for (i, &table) in tables.iter().enumerate() {
if let Some(table) = table {
let mut unzigzagged_table = [0u16; 64];
for j in 0..64 {
unzigzagged_table[UNZIGZAG[j] as usize] = table[j];
}
self.quantization_tables[i] = Some(Arc::new(unzigzagged_table));
}
}
}
// Huffman table-specification
Marker::DHT => {
let is_baseline = self.frame.as_ref().map(|frame| frame.is_baseline);
let (dc_tables, ac_tables) = parse_dht(&mut self.reader, is_baseline)?;
let current_dc_tables = mem::take(&mut self.dc_huffman_tables);
self.dc_huffman_tables = dc_tables
.into_iter()
.zip(current_dc_tables.into_iter())
.map(|(a, b)| a.or(b))
.collect();
let current_ac_tables = mem::take(&mut self.ac_huffman_tables);
self.ac_huffman_tables = ac_tables
.into_iter()
.zip(current_ac_tables.into_iter())
.map(|(a, b)| a.or(b))
.collect();
}
// Arithmetic conditioning table-specification
Marker::DAC => {
return Err(Error::Unsupported(
UnsupportedFeature::ArithmeticEntropyCoding,
))
}
// Restart interval definition
Marker::DRI => self.restart_interval = parse_dri(&mut self.reader)?,
// Comment
Marker::COM => {
let _comment = parse_com(&mut self.reader)?;
}
// Application data
Marker::APP(..) => {
if let Some(data) = parse_app(&mut self.reader, marker)? {
match data {
AppData::Adobe(color_transform) => {
self.adobe_color_transform = Some(color_transform)
}
AppData::Jfif => {
// From the JFIF spec:
// "The APP0 marker is used to identify a JPEG FIF file.
// The JPEG FIF APP0 marker is mandatory right after the SOI marker."
// Some JPEGs in the wild does not follow this though, so we allow
// JFIF headers anywhere APP0 markers are allowed.
/*
if previous_marker != Marker::SOI {
return Err(Error::Format("the JFIF APP0 marker must come right after the SOI marker".to_owned()));
}
*/
self.is_jfif = true;
}
AppData::Avi1 => self.is_mjpeg = true,
AppData::Icc(icc) => self.icc_markers.push(icc),
AppData::Exif(data) => self.exif_data = Some(data),
}
}
}
// Restart
Marker::RST(..) => {
// Some encoders emit a final RST marker after entropy-coded data, which
// decode_scan does not take care of. So if we encounter one, we ignore it.
if previous_marker != Marker::SOS {
return Err(Error::Format(
"RST found outside of entropy-coded data".to_owned(),
));
}
}
// Define number of lines
Marker::DNL => {
// Section B.2.1
// "If a DNL segment (see B.2.5) is present, it shall immediately follow the first scan."
if previous_marker != Marker::SOS || scans_processed != 1 {
return Err(Error::Format(
"DNL is only allowed immediately after the first scan".to_owned(),
));
}
return Err(Error::Unsupported(UnsupportedFeature::DNL));
}
// Hierarchical mode markers
Marker::DHP | Marker::EXP => {
return Err(Error::Unsupported(UnsupportedFeature::Hierarchical))
}
// End of image
Marker::EOI => break,
_ => {
return Err(Error::Format(format!(
"{:?} marker found where not allowed",
marker
)))
}
}
previous_marker = marker;
}
if self.frame.is_none() {
return Err(Error::Format(
"end of image encountered before frame".to_owned(),
));
}
let frame = self.frame.as_ref().unwrap();
let preference = Self::select_worker(&frame, PreferWorkerKind::Multithreaded);
worker_scope.get_or_init_worker(preference, |worker| {
self.decode_planes(worker, planes, planes_u16)
})
}
fn decode_planes(
&mut self,
worker: &mut dyn Worker,
mut planes: Vec<Vec<u8>>,
planes_u16: Vec<Vec<u16>>,
) -> Result<Vec<u8>> {
if self.frame.is_none() {
return Err(Error::Format(
"end of image encountered before frame".to_owned(),
));
}
let frame = self.frame.as_ref().unwrap();
if {
let required_mem = frame
.components
.len()
.checked_mul(frame.output_size.width.into())
.and_then(|m| m.checked_mul(frame.output_size.height.into()));
required_mem.map_or(true, |m| self.decoding_buffer_size_limit < m)
} {
return Err(Error::Format(
"size of decoded image exceeds maximum allowed size".to_owned(),
));
}
// If we're decoding a progressive jpeg and a component is unfinished, render what we've got
if frame.coding_process == CodingProcess::DctProgressive
&& self.coefficients.len() == frame.components.len()
{
for (i, component) in frame.components.iter().enumerate() {
// Only dealing with unfinished components
if self.coefficients_finished[i] == !0 {
continue;
}
let quantization_table =
match self.quantization_tables[component.quantization_table_index].clone() {
Some(quantization_table) => quantization_table,
None => continue,
};
// Get the worker prepared
let row_data = RowData {
index: i,
component: component.clone(),
quantization_table,
};
worker.start(row_data)?;
// Send the rows over to the worker and collect the result
let coefficients_per_mcu_row = usize::from(component.block_size.width)
* usize::from(component.vertical_sampling_factor)
* 64;
let mut tasks = (0..frame.mcu_size.height).map(|mcu_y| {
let offset = usize::from(mcu_y) * coefficients_per_mcu_row;
let row_coefficients =
self.coefficients[i][offset..offset + coefficients_per_mcu_row].to_vec();
(i, row_coefficients)
});
// FIXME: additional potential work stealing opportunities for rayon case if we
// also internally can parallelize over components.
worker.append_rows(&mut tasks)?;
planes[i] = worker.get_result(i)?;
}
}
if frame.coding_process == CodingProcess::Lossless {
compute_image_lossless(frame, planes_u16)
} else {
compute_image(
&frame.components,
planes,
frame.output_size,
self.determine_color_transform(),
)
}
}
fn determine_color_transform(&self) -> ColorTransform {
if let Some(color_transform) = self.color_transform {
return color_transform;
}
let frame = self.frame.as_ref().unwrap();
if frame.components.len() == 1 {
return ColorTransform::Grayscale;
}
// Using logic for determining colour as described here: https://entropymine.wordpress.com/2018/10/22/how-is-a-jpeg-images-color-type-determined/
if frame.components.len() == 3 {
match (
frame.components[0].identifier,
frame.components[1].identifier,
frame.components[2].identifier,
) {
(1, 2, 3) => {
return ColorTransform::YCbCr;
}
(1, 34, 35) => {
return ColorTransform::JcsBgYcc;
}
(82, 71, 66) => {
return ColorTransform::RGB;
}
(114, 103, 98) => {
return ColorTransform::JcsBgRgb;
}
_ => {}
}
if self.is_jfif {
return ColorTransform::YCbCr;
}
}
if let Some(colour_transform) = self.adobe_color_transform {
match colour_transform {
AdobeColorTransform::Unknown => {
if frame.components.len() == 3 {
return ColorTransform::RGB;
} else if frame.components.len() == 4 {
return ColorTransform::CMYK;
}
}
AdobeColorTransform::YCbCr => {
return ColorTransform::YCbCr;
}
AdobeColorTransform::YCCK => {
return ColorTransform::YCCK;
}
}
} else if frame.components.len() == 4 {
return ColorTransform::CMYK;
}
if frame.components.len() == 4 {
ColorTransform::YCCK
} else if frame.components.len() == 3 {
ColorTransform::YCbCr
} else {
ColorTransform::Unknown
}
}
fn read_marker(&mut self) -> Result<Marker> {
loop {
// This should be an error as the JPEG spec doesn't allow extraneous data between marker segments.
// libjpeg allows this though and there are images in the wild utilising it, so we are
// forced to support this behavior.
// Sony Ericsson P990i is an example of a device which produce this sort of JPEGs.
while read_u8(&mut self.reader)? != 0xFF {}
// Section B.1.1.2
// All markers are assigned two-byte codes: an XFF byte followed by a
// byte which is not equal to 0 or XFF (see Table B.1). Any marker may
// optionally be preceded by any number of fill bytes, which are bytes
// assigned code XFF.
let mut byte = read_u8(&mut self.reader)?;
// Section B.1.1.2
// "Any marker may optionally be preceded by any number of fill bytes, which are bytes assigned code XFF."
while byte == 0xFF {
byte = read_u8(&mut self.reader)?;
}
if byte != 0x00 && byte != 0xFF {
return Ok(Marker::from_u8(byte).unwrap());
}
}
}
fn decode_scan(
&mut self,
frame: &FrameInfo,
scan: &ScanInfo,
worker: &mut dyn Worker,
finished: &[bool; MAX_COMPONENTS],
) -> Result<(Option<Marker>, Option<Vec<Vec<u8>>>)> {
assert!(scan.component_indices.len() <= MAX_COMPONENTS);
let components: Vec<Component> = scan
.component_indices
.iter()
.map(|&i| frame.components[i].clone())
.collect();
// Verify that all required quantization tables has been set.
if components
.iter()
.any(|component| self.quantization_tables[component.quantization_table_index].is_none())
{
return Err(Error::Format("use of unset quantization table".to_owned()));
}
if self.is_mjpeg {
fill_default_mjpeg_tables(
scan,
&mut self.dc_huffman_tables,
&mut self.ac_huffman_tables,
);
}
// Verify that all required huffman tables has been set.
if scan.spectral_selection.start == 0
&& scan
.dc_table_indices
.iter()
.any(|&i| self.dc_huffman_tables[i].is_none())
{
return Err(Error::Format(
"scan makes use of unset dc huffman table".to_owned(),
));
}
if scan.spectral_selection.end > 1
&& scan
.ac_table_indices
.iter()
.any(|&i| self.ac_huffman_tables[i].is_none())
{
return Err(Error::Format(
"scan makes use of unset ac huffman table".to_owned(),
));
}
// Prepare the worker thread for the work to come.
for (i, component) in components.iter().enumerate() {
if finished[i] {
let row_data = RowData {
index: i,
component: component.clone(),
quantization_table: self.quantization_tables
[component.quantization_table_index]
.clone()
.unwrap(),
};
worker.start(row_data)?;
}
}
let is_progressive = frame.coding_process == CodingProcess::DctProgressive;
let is_interleaved = components.len() > 1;
let mut dummy_block = [0i16; 64];
let mut huffman = HuffmanDecoder::new();
let mut dc_predictors = [0i16; MAX_COMPONENTS];
let mut mcus_left_until_restart = self.restart_interval;
let mut expected_rst_num = 0;
let mut eob_run = 0;
let mut mcu_row_coefficients = vec![vec![]; components.len()];
if !is_progressive {
for (i, component) in components.iter().enumerate().filter(|&(i, _)| finished[i]) {
let coefficients_per_mcu_row = component.block_size.width as usize
* component.vertical_sampling_factor as usize
* 64;
mcu_row_coefficients[i] = vec![0i16; coefficients_per_mcu_row];
}
}
// 4.8.2
// When reading from the stream, if the data is non-interleaved then an MCU consists of
// exactly one block (effectively a 1x1 sample).
let (mcu_horizontal_samples, mcu_vertical_samples) = if is_interleaved {
let horizontal = components
.iter()
.map(|component| component.horizontal_sampling_factor as u16)
.collect::<Vec<_>>();
let vertical = components
.iter()
.map(|component| component.vertical_sampling_factor as u16)
.collect::<Vec<_>>();
(horizontal, vertical)
} else {
(vec![1], vec![1])
};
// This also affects how many MCU values we read from stream. If it's a non-interleaved stream,
// the MCUs will be exactly the block count.
let (max_mcu_x, max_mcu_y) = if is_interleaved {
(frame.mcu_size.width, frame.mcu_size.height)
} else {
(
components[0].block_size.width,
components[0].block_size.height,
)
};
for mcu_y in 0..max_mcu_y {
if mcu_y * 8 >= frame.image_size.height {
break;
}
for mcu_x in 0..max_mcu_x {
if mcu_x * 8 >= frame.image_size.width {
break;
}
if self.restart_interval > 0 {
if mcus_left_until_restart == 0 {
match huffman.take_marker(&mut self.reader)? {
Some(Marker::RST(n)) => {
if n != expected_rst_num {
return Err(Error::Format(format!(
"found RST{} where RST{} was expected",
n, expected_rst_num
)));
}
huffman.reset();
// Section F.2.1.3.1
dc_predictors = [0i16; MAX_COMPONENTS];
// Section G.1.2.2
eob_run = 0;
expected_rst_num = (expected_rst_num + 1) % 8;
mcus_left_until_restart = self.restart_interval;
}
Some(marker) => {
return Err(Error::Format(format!(
"found marker {:?} inside scan where RST{} was expected",
marker, expected_rst_num
)))
}
None => {
return Err(Error::Format(format!(
"no marker found where RST{} was expected",
expected_rst_num
)))
}
}
}
mcus_left_until_restart -= 1;
}
for (i, component) in components.iter().enumerate() {
for v_pos in 0..mcu_vertical_samples[i] {
for h_pos in 0..mcu_horizontal_samples[i] {
let coefficients = if is_progressive {
let block_y = (mcu_y * mcu_vertical_samples[i] + v_pos) as usize;
let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize;
let block_offset =
(block_y * component.block_size.width as usize + block_x) * 64;
&mut self.coefficients[scan.component_indices[i]]
[block_offset..block_offset + 64]
} else if finished[i] {
// Because the worker thread operates in batches as if we were always interleaved, we
// need to distinguish between a single-shot buffer and one that's currently in process
// (for a non-interleaved) stream
let mcu_batch_current_row = if is_interleaved {
0
} else {
mcu_y % component.vertical_sampling_factor as u16
};
let block_y = (mcu_batch_current_row * mcu_vertical_samples[i]
+ v_pos) as usize;
let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize;
let block_offset =
(block_y * component.block_size.width as usize + block_x) * 64;
&mut mcu_row_coefficients[i][block_offset..block_offset + 64]
} else {
&mut dummy_block[..64]
}
.try_into()
.unwrap();
if scan.successive_approximation_high == 0 {
decode_block(
&mut self.reader,
coefficients,
&mut huffman,
self.dc_huffman_tables[scan.dc_table_indices[i]].as_ref(),
self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
scan.spectral_selection.clone(),
scan.successive_approximation_low,
&mut eob_run,
&mut dc_predictors[i],
)?;
} else {
decode_block_successive_approximation(
&mut self.reader,
coefficients,
&mut huffman,
self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(),
scan.spectral_selection.clone(),
scan.successive_approximation_low,
&mut eob_run,
)?;
}
}
}
}
}
// Send the coefficients from this MCU row to the worker thread for dequantization and idct.
for (i, component) in components.iter().enumerate() {
if finished[i] {
// In the event of non-interleaved streams, if we're still building the buffer out,
// keep going; don't send it yet. We also need to ensure we don't skip over the last
// row(s) of the image.
if !is_interleaved && (mcu_y + 1) * 8 < frame.image_size.height {
if (mcu_y + 1) % component.vertical_sampling_factor as u16 > 0 {
continue;
}
}
let coefficients_per_mcu_row = component.block_size.width as usize
* component.vertical_sampling_factor as usize
* 64;
let row_coefficients = if is_progressive {
// Because non-interleaved streams will have multiple MCU rows concatenated together,
// the row for calculating the offset is different.
let worker_mcu_y = if is_interleaved {
mcu_y
} else {
// Explicitly doing floor-division here
mcu_y / component.vertical_sampling_factor as u16
};
let offset = worker_mcu_y as usize * coefficients_per_mcu_row;
self.coefficients[scan.component_indices[i]]
[offset..offset + coefficients_per_mcu_row]
.to_vec()
} else {
mem::replace(
&mut mcu_row_coefficients[i],
vec![0i16; coefficients_per_mcu_row],
)
};
// FIXME: additional potential work stealing opportunities for rayon case if we
// also internally can parallelize over components.
worker.append_row((i, row_coefficients))?;
}
}
}
let mut marker = huffman.take_marker(&mut self.reader)?;
while let Some(Marker::RST(_)) = marker {
marker = self.read_marker().ok();
}
if finished.iter().any(|&c| c) {
// Retrieve all the data from the worker thread.
let mut data = vec![Vec::new(); frame.components.len()];
for (i, &component_index) in scan.component_indices.iter().enumerate() {
if finished[i] {
data[component_index] = worker.get_result(i)?;
}
}
Ok((marker, Some(data)))
} else {
Ok((marker, None))
}
}
}
fn decode_block<R: Read>(
reader: &mut R,
coefficients: &mut [i16; 64],
huffman: &mut HuffmanDecoder,
dc_table: Option<&HuffmanTable>,
ac_table: Option<&HuffmanTable>,
spectral_selection: Range<u8>,
successive_approximation_low: u8,
eob_run: &mut u16,
dc_predictor: &mut i16,
) -> Result<()> {
debug_assert_eq!(coefficients.len(), 64);
if spectral_selection.start == 0 {
// Section F.2.2.1
// Figure F.12
let value = huffman.decode(reader, dc_table.unwrap())?;
let diff = match value {
0 => 0,
1..=11 => huffman.receive_extend(reader, value)?,
_ => {
// Section F.1.2.1.1
// Table F.1
return Err(Error::Format(
"invalid DC difference magnitude category".to_owned(),
));
}
};
// Malicious JPEG files can cause this add to overflow, therefore we use wrapping_add.
// One example of such a file is tests/crashtest/images/dc-predictor-overflow.jpg
*dc_predictor = dc_predictor.wrapping_add(diff);
coefficients[0] = *dc_predictor << successive_approximation_low;
}
let mut index = cmp::max(spectral_selection.start, 1);
if index < spectral_selection.end && *eob_run > 0 {
*eob_run -= 1;
return Ok(());
}
// Section F.1.2.2.1
while index < spectral_selection.end {
if let Some((value, run)) = huffman.decode_fast_ac(reader, ac_table.unwrap())? {
index += run;
if index >= spectral_selection.end {
break;
}
coefficients[UNZIGZAG[index as usize] as usize] = value << successive_approximation_low;
index += 1;
} else {
let byte = huffman.decode(reader, ac_table.unwrap())?;
let r = byte >> 4;
let s = byte & 0x0f;
if s == 0 {
match r {
15 => index += 16, // Run length of 16 zero coefficients.
_ => {
*eob_run = (1 << r) - 1;
if r > 0 {
*eob_run += huffman.get_bits(reader, r)?;
}
break;
}
}
} else {
index += r;
if index >= spectral_selection.end {
break;
}
coefficients[UNZIGZAG[index as usize] as usize] =
huffman.receive_extend(reader, s)? << successive_approximation_low;
index += 1;
}
}
}
Ok(())
}
fn decode_block_successive_approximation<R: Read>(
reader: &mut R,
coefficients: &mut [i16; 64],
huffman: &mut HuffmanDecoder,
ac_table: Option<&HuffmanTable>,
spectral_selection: Range<u8>,
successive_approximation_low: u8,
eob_run: &mut u16,
) -> Result<()> {
debug_assert_eq!(coefficients.len(), 64);
let bit = 1 << successive_approximation_low;
if spectral_selection.start == 0 {
// Section G.1.2.1
if huffman.get_bits(reader, 1)? == 1 {
coefficients[0] |= bit;
}
} else {
// Section G.1.2.3
if *eob_run > 0 {
*eob_run -= 1;
refine_non_zeroes(reader, coefficients, huffman, spectral_selection, 64, bit)?;
return Ok(());
}
let mut index = spectral_selection.start;
while index < spectral_selection.end {
let byte = huffman.decode(reader, ac_table.unwrap())?;
let r = byte >> 4;
let s = byte & 0x0f;
let mut zero_run_length = r;
let mut value = 0;
match s {
0 => {
match r {
15 => {
// Run length of 16 zero coefficients.
// We don't need to do anything special here, zero_run_length is 15
// and then value (which is zero) gets written, resulting in 16
// zero coefficients.
}
_ => {
*eob_run = (1 << r) - 1;
if r > 0 {
*eob_run += huffman.get_bits(reader, r)?;
}
// Force end of block.
zero_run_length = 64;
}
}
}
1 => {
if huffman.get_bits(reader, 1)? == 1 {
value = bit;
} else {
value = -bit;
}
}
_ => return Err(Error::Format("unexpected huffman code".to_owned())),
}
let range = Range {
start: index,
end: spectral_selection.end,
};
index = refine_non_zeroes(reader, coefficients, huffman, range, zero_run_length, bit)?;
if value != 0 {
coefficients[UNZIGZAG[index as usize] as usize] = value;
}
index += 1;
}
}
Ok(())
}
fn refine_non_zeroes<R: Read>(
reader: &mut R,
coefficients: &mut [i16; 64],
huffman: &mut HuffmanDecoder,
range: Range<u8>,
zrl: u8,
bit: i16,
) -> Result<u8> {
debug_assert_eq!(coefficients.len(), 64);
let last = range.end - 1;
let mut zero_run_length = zrl;
for i in range {
let index = UNZIGZAG[i as usize] as usize;
let coefficient = &mut coefficients[index];
if *coefficient == 0 {
if zero_run_length == 0 {
return Ok(i);
}
zero_run_length -= 1;
} else if huffman.get_bits(reader, 1)? == 1 && *coefficient & bit == 0 {
if *coefficient > 0 {
*coefficient = coefficient
.checked_add(bit)
.ok_or_else(|| Error::Format("Coefficient overflow".to_owned()))?;
} else {
*coefficient = coefficient
.checked_sub(bit)
.ok_or_else(|| Error::Format("Coefficient overflow".to_owned()))?;
}
}
}
Ok(last)
}
fn compute_image(
components: &[Component],
mut data: Vec<Vec<u8>>,
output_size: Dimensions,
color_transform: ColorTransform,
) -> Result<Vec<u8>> {
if data.is_empty() || data.iter().any(Vec::is_empty) {
return Err(Error::Format("not all components have data".to_owned()));
}
if components.len() == 1 {
let component = &components[0];
let mut decoded: Vec<u8> = data.remove(0);
let width = component.size.width as usize;
let height = component.size.height as usize;
let size = width * height;
let line_stride = component.block_size.width as usize * component.dct_scale;
// if the image width is a multiple of the block size,
// then we don't have to move bytes in the decoded data
if usize::from(output_size.width) != line_stride {
// The first line already starts at index 0, so we need to move only lines 1..height
// We move from the top down because all lines are being moved backwards.
for y in 1..height {
let destination_idx = y * width;
let source_idx = y * line_stride;
let end = source_idx + width;
decoded.copy_within(source_idx..end, destination_idx);
}
}
decoded.resize(size, 0);
Ok(decoded)
} else {
compute_image_parallel(components, data, output_size, color_transform)
}
}
pub(crate) fn choose_color_convert_func(
component_count: usize,
color_transform: ColorTransform,
) -> Result<fn(&[Vec<u8>], &mut [u8])> {
match component_count {
3 => match color_transform {
ColorTransform::None => Ok(color_no_convert),
ColorTransform::Grayscale => Err(Error::Format(
"Invalid number of channels (3) for Grayscale data".to_string(),
)),
ColorTransform::RGB => Ok(color_convert_line_rgb),
ColorTransform::YCbCr => Ok(color_convert_line_ycbcr),
ColorTransform::CMYK => Err(Error::Format(
"Invalid number of channels (3) for CMYK data".to_string(),
)),
ColorTransform::YCCK => Err(Error::Format(
"Invalid number of channels (3) for YCCK data".to_string(),
)),
ColorTransform::JcsBgYcc => Err(Error::Unsupported(
UnsupportedFeature::ColorTransform(ColorTransform::JcsBgYcc),
)),
ColorTransform::JcsBgRgb => Err(Error::Unsupported(
UnsupportedFeature::ColorTransform(ColorTransform::JcsBgRgb),
)),
ColorTransform::Unknown => Err(Error::Format("Unknown colour transform".to_string())),
},
4 => match color_transform {
ColorTransform::None => Ok(color_no_convert),
ColorTransform::Grayscale => Err(Error::Format(
"Invalid number of channels (4) for Grayscale data".to_string(),
)),
ColorTransform::RGB => Err(Error::Format(
"Invalid number of channels (4) for RGB data".to_string(),
)),
ColorTransform::YCbCr => Err(Error::Format(
"Invalid number of channels (4) for YCbCr data".to_string(),
)),
ColorTransform::CMYK => Ok(color_convert_line_cmyk),
ColorTransform::YCCK => Ok(color_convert_line_ycck),
ColorTransform::JcsBgYcc => Err(Error::Unsupported(
UnsupportedFeature::ColorTransform(ColorTransform::JcsBgYcc),
)),
ColorTransform::JcsBgRgb => Err(Error::Unsupported(
UnsupportedFeature::ColorTransform(ColorTransform::JcsBgRgb),
)),
ColorTransform::Unknown => Err(Error::Format("Unknown colour transform".to_string())),
},
_ => panic!(),
}
}
fn color_convert_line_rgb(data: &[Vec<u8>], output: &mut [u8]) {
assert!(data.len() == 3, "wrong number of components for rgb");
let [r, g, b]: &[Vec<u8>; 3] = data.try_into().unwrap();
for (((chunk, r), g), b) in output
.chunks_exact_mut(3)
.zip(r.iter())
.zip(g.iter())
.zip(b.iter())
{
chunk[0] = *r;
chunk[1] = *g;
chunk[2] = *b;
}
}
fn color_convert_line_ycbcr(data: &[Vec<u8>], output: &mut [u8]) {
assert!(data.len() == 3, "wrong number of components for ycbcr");
let [y, cb, cr]: &[_; 3] = data.try_into().unwrap();
#[cfg(not(feature = "platform_independent"))]
let arch_specific_pixels = {
if let Some(ycbcr) = crate::arch::get_color_convert_line_ycbcr() {
#[allow(unsafe_code)]
unsafe {
ycbcr(y, cb, cr, output)
}
} else {
0
}
};
#[cfg(feature = "platform_independent")]
let arch_specific_pixels = 0;
for (((chunk, y), cb), cr) in output
.chunks_exact_mut(3)
.zip(y.iter())
.zip(cb.iter())
.zip(cr.iter())
.skip(arch_specific_pixels)
{
let (r, g, b) = ycbcr_to_rgb(*y, *cb, *cr);
chunk[0] = r;
chunk[1] = g;
chunk[2] = b;
}
}
fn color_convert_line_ycck(data: &[Vec<u8>], output: &mut [u8]) {
assert!(data.len() == 4, "wrong number of components for ycck");
let [c, m, y, k]: &[Vec<u8>; 4] = data.try_into().unwrap();
for ((((chunk, c), m), y), k) in output
.chunks_exact_mut(4)
.zip(c.iter())
.zip(m.iter())
.zip(y.iter())
.zip(k.iter())
{
let (r, g, b) = ycbcr_to_rgb(*c, *m, *y);
chunk[0] = r;
chunk[1] = g;
chunk[2] = b;
chunk[3] = 255 - *k;
}
}
fn color_convert_line_cmyk(data: &[Vec<u8>], output: &mut [u8]) {
assert!(data.len() == 4, "wrong number of components for cmyk");
let [c, m, y, k]: &[Vec<u8>; 4] = data.try_into().unwrap();
for ((((chunk, c), m), y), k) in output
.chunks_exact_mut(4)
.zip(c.iter())
.zip(m.iter())
.zip(y.iter())
.zip(k.iter())
{
chunk[0] = 255 - c;
chunk[1] = 255 - m;
chunk[2] = 255 - y;
chunk[3] = 255 - k;
}
}
fn color_no_convert(data: &[Vec<u8>], output: &mut [u8]) {
let mut output_iter = output.iter_mut();
for pixel in data {
for d in pixel {
*(output_iter.next().unwrap()) = *d;
}
}
}
const FIXED_POINT_OFFSET: i32 = 20;
const HALF: i32 = (1 << FIXED_POINT_OFFSET) / 2;
// ITU-R BT.601
// Based on libjpeg-turbo's jdcolext.c
fn ycbcr_to_rgb(y: u8, cb: u8, cr: u8) -> (u8, u8, u8) {
let y = y as i32 * (1 << FIXED_POINT_OFFSET) + HALF;
let cb = cb as i32 - 128;
let cr = cr as i32 - 128;
let r = clamp_fixed_point(y + stbi_f2f(1.40200) * cr);
let g = clamp_fixed_point(y - stbi_f2f(0.34414) * cb - stbi_f2f(0.71414) * cr);
let b = clamp_fixed_point(y + stbi_f2f(1.77200) * cb);
(r, g, b)
}
fn stbi_f2f(x: f32) -> i32 {
(x * ((1 << FIXED_POINT_OFFSET) as f32) + 0.5) as i32
}
fn clamp_fixed_point(value: i32) -> u8 {
(value >> FIXED_POINT_OFFSET).min(255).max(0) as u8
}