denyhosts/clamscan/libclamav/tomsfastmath/exptmod/fp_exptmod.c
2022-10-22 18:41:00 +08:00

277 lines
6.6 KiB
C

/* TomsFastMath, a fast ISO C bignum library.
*
* This project is meant to fill in where LibTomMath
* falls short. That is speed ;-)
*
* This project is public domain and free for all purposes.
*
* Tom St Denis, tomstdenis@gmail.com
*/
#include "bignum_fast.h"
#ifdef TFM_TIMING_RESISTANT
/* timing resistant montgomery ladder based exptmod
Based on work by Marc Joye, Sung-Ming Yen, "The Montgomery Powering Ladder", Cryptographic Hardware and Embedded Systems, CHES 2002
*/
static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
{
fp_int R[2];
fp_digit buf, mp;
int err, bitcnt, digidx, y;
/* now setup montgomery */
if ((err = fp_montgomery_setup (P, &mp)) != FP_OKAY) {
return err;
}
fp_init(&R[0]);
fp_init(&R[1]);
/* now we need R mod m */
fp_montgomery_calc_normalization (&R[0], P);
/* now set R[0][1] to G * R mod m */
if (fp_cmp_mag(P, G) != FP_GT) {
/* G > P so we reduce it first */
fp_mod(G, P, &R[1]);
} else {
fp_copy(G, &R[1]);
}
fp_mulmod (&R[1], &R[0], P, &R[1]);
/* for j = t-1 downto 0 do
r_!k = R0*R1; r_k = r_k^2
*/
/* set initial mode and bit cnt */
bitcnt = 1;
buf = 0;
digidx = X->used - 1;
for (;;) {
/* grab next digit as required */
if (--bitcnt == 0) {
/* if digidx == -1 we are out of digits so break */
if (digidx == -1) {
break;
}
/* read next digit and reset bitcnt */
buf = X->dp[digidx--];
bitcnt = (int)DIGIT_BIT;
}
/* grab the next msb from the exponent */
y = (fp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
buf <<= (fp_digit)1;
/* do ops */
fp_mul(&R[0], &R[1], &R[y^1]); fp_montgomery_reduce(&R[y^1], P, mp);
fp_sqr(&R[y], &R[y]); fp_montgomery_reduce(&R[y], P, mp);
}
fp_montgomery_reduce(&R[0], P, mp);
fp_copy(&R[0], Y);
return FP_OKAY;
}
#else
/* y = g**x (mod b)
* Some restrictions... x must be positive and < b
*/
static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
{
fp_int M[64], res;
fp_digit buf, mp;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
/* find window size */
x = fp_count_bits (X);
if (x <= 21) {
winsize = 1;
} else if (x <= 36) {
winsize = 3;
} else if (x <= 140) {
winsize = 4;
} else if (x <= 450) {
winsize = 5;
} else {
winsize = 6;
}
/* init M array */
memset(M, 0, sizeof(M));
/* now setup montgomery */
if ((err = fp_montgomery_setup (P, &mp)) != FP_OKAY) {
return err;
}
/* setup result */
fp_init(&res);
/* create M table
*
* The M table contains powers of the input base, e.g. M[x] = G^x mod P
*
* The first half of the table is not computed though accept for M[0] and M[1]
*/
/* now we need R mod m */
fp_montgomery_calc_normalization (&res, P);
/* now set M[1] to G * R mod m */
if (fp_cmp_mag(P, G) != FP_GT) {
/* G > P so we reduce it first */
fp_mod(G, P, &M[1]);
} else {
fp_copy(G, &M[1]);
}
fp_mulmod (&M[1], &res, P, &M[1]);
/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
fp_copy (&M[1], &M[1 << (winsize - 1)]);
for (x = 0; x < (winsize - 1); x++) {
fp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)]);
fp_montgomery_reduce (&M[1 << (winsize - 1)], P, mp);
}
/* create upper table */
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
fp_mul(&M[x - 1], &M[1], &M[x]);
fp_montgomery_reduce(&M[x], P, mp);
}
/* set initial mode and bit cnt */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = X->used - 1;
bitcpy = 0;
bitbuf = 0;
for (;;) {
/* grab next digit as required */
if (--bitcnt == 0) {
/* if digidx == -1 we are out of digits so break */
if (digidx == -1) {
break;
}
/* read next digit and reset bitcnt */
buf = X->dp[digidx--];
bitcnt = (int)DIGIT_BIT;
}
/* grab the next msb from the exponent */
y = (fp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
buf <<= (fp_digit)1;
/* if the bit is zero and mode == 0 then we ignore it
* These represent the leading zero bits before the first 1 bit
* in the exponent. Technically this opt is not required but it
* does lower the # of trivial squaring/reductions used
*/
if (mode == 0 && y == 0) {
continue;
}
/* if the bit is zero and mode == 1 then we square */
if (mode == 1 && y == 0) {
fp_sqr(&res, &res);
fp_montgomery_reduce(&res, P, mp);
continue;
}
/* else we add it to the window */
bitbuf |= (y << (winsize - ++bitcpy));
mode = 2;
if (bitcpy == winsize) {
/* ok window is filled so square as required and multiply */
/* square first */
for (x = 0; x < winsize; x++) {
fp_sqr(&res, &res);
fp_montgomery_reduce(&res, P, mp);
}
/* then multiply */
fp_mul(&res, &M[bitbuf], &res);
fp_montgomery_reduce(&res, P, mp);
/* empty window and reset */
bitcpy = 0;
bitbuf = 0;
mode = 1;
}
}
/* if bits remain then square/multiply */
if (mode == 2 && bitcpy > 0) {
/* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) {
fp_sqr(&res, &res);
fp_montgomery_reduce(&res, P, mp);
/* get next bit of the window */
bitbuf <<= 1;
if ((bitbuf & (1 << winsize)) != 0) {
/* then multiply */
fp_mul(&res, &M[1], &res);
fp_montgomery_reduce(&res, P, mp);
}
}
}
/* fixup result if Montgomery reduction is used
* recall that any value in a Montgomery system is
* actually multiplied by R mod n. So we have
* to reduce one more time to cancel out the factor
* of R.
*/
fp_montgomery_reduce(&res, P, mp);
/* swap res with Y */
fp_copy (&res, Y);
return FP_OKAY;
}
#endif
int fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
{
fp_int tmp;
int err;
#ifdef TFM_CHECK
/* prevent overflows */
if (P->used > (FP_SIZE/2)) {
return FP_VAL;
}
#endif
/* is X negative? */
if (X->sign == FP_NEG) {
/* yes, copy G and invmod it */
fp_copy(G, &tmp);
if ((err = fp_invmod(&tmp, P, &tmp)) != FP_OKAY) {
return err;
}
X->sign = FP_ZPOS;
err = _fp_exptmod(&tmp, X, P, Y);
if (X != Y) {
X->sign = FP_NEG;
}
return err;
} else {
/* Positive exponent so just exptmod */
return _fp_exptmod(G, X, P, Y);
}
}
/* $Source: /cvs/libtom/tomsfastmath/src/exptmod/fp_exptmod.c,v $ */
/* $Revision: 1.1 $ */
/* $Date: 2006/12/31 21:25:53 $ */