277 lines
6.6 KiB
C
277 lines
6.6 KiB
C
/* TomsFastMath, a fast ISO C bignum library.
|
|
*
|
|
* This project is meant to fill in where LibTomMath
|
|
* falls short. That is speed ;-)
|
|
*
|
|
* This project is public domain and free for all purposes.
|
|
*
|
|
* Tom St Denis, tomstdenis@gmail.com
|
|
*/
|
|
#include "bignum_fast.h"
|
|
|
|
#ifdef TFM_TIMING_RESISTANT
|
|
|
|
/* timing resistant montgomery ladder based exptmod
|
|
|
|
Based on work by Marc Joye, Sung-Ming Yen, "The Montgomery Powering Ladder", Cryptographic Hardware and Embedded Systems, CHES 2002
|
|
*/
|
|
static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
|
|
{
|
|
fp_int R[2];
|
|
fp_digit buf, mp;
|
|
int err, bitcnt, digidx, y;
|
|
|
|
/* now setup montgomery */
|
|
if ((err = fp_montgomery_setup (P, &mp)) != FP_OKAY) {
|
|
return err;
|
|
}
|
|
|
|
fp_init(&R[0]);
|
|
fp_init(&R[1]);
|
|
|
|
/* now we need R mod m */
|
|
fp_montgomery_calc_normalization (&R[0], P);
|
|
|
|
/* now set R[0][1] to G * R mod m */
|
|
if (fp_cmp_mag(P, G) != FP_GT) {
|
|
/* G > P so we reduce it first */
|
|
fp_mod(G, P, &R[1]);
|
|
} else {
|
|
fp_copy(G, &R[1]);
|
|
}
|
|
fp_mulmod (&R[1], &R[0], P, &R[1]);
|
|
|
|
/* for j = t-1 downto 0 do
|
|
r_!k = R0*R1; r_k = r_k^2
|
|
*/
|
|
|
|
/* set initial mode and bit cnt */
|
|
bitcnt = 1;
|
|
buf = 0;
|
|
digidx = X->used - 1;
|
|
|
|
for (;;) {
|
|
/* grab next digit as required */
|
|
if (--bitcnt == 0) {
|
|
/* if digidx == -1 we are out of digits so break */
|
|
if (digidx == -1) {
|
|
break;
|
|
}
|
|
/* read next digit and reset bitcnt */
|
|
buf = X->dp[digidx--];
|
|
bitcnt = (int)DIGIT_BIT;
|
|
}
|
|
|
|
/* grab the next msb from the exponent */
|
|
y = (fp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
|
|
buf <<= (fp_digit)1;
|
|
|
|
/* do ops */
|
|
fp_mul(&R[0], &R[1], &R[y^1]); fp_montgomery_reduce(&R[y^1], P, mp);
|
|
fp_sqr(&R[y], &R[y]); fp_montgomery_reduce(&R[y], P, mp);
|
|
}
|
|
|
|
fp_montgomery_reduce(&R[0], P, mp);
|
|
fp_copy(&R[0], Y);
|
|
return FP_OKAY;
|
|
}
|
|
|
|
#else
|
|
|
|
/* y = g**x (mod b)
|
|
* Some restrictions... x must be positive and < b
|
|
*/
|
|
static int _fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
|
|
{
|
|
fp_int M[64], res;
|
|
fp_digit buf, mp;
|
|
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
|
|
|
/* find window size */
|
|
x = fp_count_bits (X);
|
|
if (x <= 21) {
|
|
winsize = 1;
|
|
} else if (x <= 36) {
|
|
winsize = 3;
|
|
} else if (x <= 140) {
|
|
winsize = 4;
|
|
} else if (x <= 450) {
|
|
winsize = 5;
|
|
} else {
|
|
winsize = 6;
|
|
}
|
|
|
|
/* init M array */
|
|
memset(M, 0, sizeof(M));
|
|
|
|
/* now setup montgomery */
|
|
if ((err = fp_montgomery_setup (P, &mp)) != FP_OKAY) {
|
|
return err;
|
|
}
|
|
|
|
/* setup result */
|
|
fp_init(&res);
|
|
|
|
/* create M table
|
|
*
|
|
* The M table contains powers of the input base, e.g. M[x] = G^x mod P
|
|
*
|
|
* The first half of the table is not computed though accept for M[0] and M[1]
|
|
*/
|
|
|
|
/* now we need R mod m */
|
|
fp_montgomery_calc_normalization (&res, P);
|
|
|
|
/* now set M[1] to G * R mod m */
|
|
if (fp_cmp_mag(P, G) != FP_GT) {
|
|
/* G > P so we reduce it first */
|
|
fp_mod(G, P, &M[1]);
|
|
} else {
|
|
fp_copy(G, &M[1]);
|
|
}
|
|
fp_mulmod (&M[1], &res, P, &M[1]);
|
|
|
|
/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
|
|
fp_copy (&M[1], &M[1 << (winsize - 1)]);
|
|
for (x = 0; x < (winsize - 1); x++) {
|
|
fp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)]);
|
|
fp_montgomery_reduce (&M[1 << (winsize - 1)], P, mp);
|
|
}
|
|
|
|
/* create upper table */
|
|
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
|
fp_mul(&M[x - 1], &M[1], &M[x]);
|
|
fp_montgomery_reduce(&M[x], P, mp);
|
|
}
|
|
|
|
/* set initial mode and bit cnt */
|
|
mode = 0;
|
|
bitcnt = 1;
|
|
buf = 0;
|
|
digidx = X->used - 1;
|
|
bitcpy = 0;
|
|
bitbuf = 0;
|
|
|
|
for (;;) {
|
|
/* grab next digit as required */
|
|
if (--bitcnt == 0) {
|
|
/* if digidx == -1 we are out of digits so break */
|
|
if (digidx == -1) {
|
|
break;
|
|
}
|
|
/* read next digit and reset bitcnt */
|
|
buf = X->dp[digidx--];
|
|
bitcnt = (int)DIGIT_BIT;
|
|
}
|
|
|
|
/* grab the next msb from the exponent */
|
|
y = (fp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
|
|
buf <<= (fp_digit)1;
|
|
|
|
/* if the bit is zero and mode == 0 then we ignore it
|
|
* These represent the leading zero bits before the first 1 bit
|
|
* in the exponent. Technically this opt is not required but it
|
|
* does lower the # of trivial squaring/reductions used
|
|
*/
|
|
if (mode == 0 && y == 0) {
|
|
continue;
|
|
}
|
|
|
|
/* if the bit is zero and mode == 1 then we square */
|
|
if (mode == 1 && y == 0) {
|
|
fp_sqr(&res, &res);
|
|
fp_montgomery_reduce(&res, P, mp);
|
|
continue;
|
|
}
|
|
|
|
/* else we add it to the window */
|
|
bitbuf |= (y << (winsize - ++bitcpy));
|
|
mode = 2;
|
|
|
|
if (bitcpy == winsize) {
|
|
/* ok window is filled so square as required and multiply */
|
|
/* square first */
|
|
for (x = 0; x < winsize; x++) {
|
|
fp_sqr(&res, &res);
|
|
fp_montgomery_reduce(&res, P, mp);
|
|
}
|
|
|
|
/* then multiply */
|
|
fp_mul(&res, &M[bitbuf], &res);
|
|
fp_montgomery_reduce(&res, P, mp);
|
|
|
|
/* empty window and reset */
|
|
bitcpy = 0;
|
|
bitbuf = 0;
|
|
mode = 1;
|
|
}
|
|
}
|
|
|
|
/* if bits remain then square/multiply */
|
|
if (mode == 2 && bitcpy > 0) {
|
|
/* square then multiply if the bit is set */
|
|
for (x = 0; x < bitcpy; x++) {
|
|
fp_sqr(&res, &res);
|
|
fp_montgomery_reduce(&res, P, mp);
|
|
|
|
/* get next bit of the window */
|
|
bitbuf <<= 1;
|
|
if ((bitbuf & (1 << winsize)) != 0) {
|
|
/* then multiply */
|
|
fp_mul(&res, &M[1], &res);
|
|
fp_montgomery_reduce(&res, P, mp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* fixup result if Montgomery reduction is used
|
|
* recall that any value in a Montgomery system is
|
|
* actually multiplied by R mod n. So we have
|
|
* to reduce one more time to cancel out the factor
|
|
* of R.
|
|
*/
|
|
fp_montgomery_reduce(&res, P, mp);
|
|
|
|
/* swap res with Y */
|
|
fp_copy (&res, Y);
|
|
return FP_OKAY;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
int fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y)
|
|
{
|
|
fp_int tmp;
|
|
int err;
|
|
|
|
#ifdef TFM_CHECK
|
|
/* prevent overflows */
|
|
if (P->used > (FP_SIZE/2)) {
|
|
return FP_VAL;
|
|
}
|
|
#endif
|
|
|
|
/* is X negative? */
|
|
if (X->sign == FP_NEG) {
|
|
/* yes, copy G and invmod it */
|
|
fp_copy(G, &tmp);
|
|
if ((err = fp_invmod(&tmp, P, &tmp)) != FP_OKAY) {
|
|
return err;
|
|
}
|
|
X->sign = FP_ZPOS;
|
|
err = _fp_exptmod(&tmp, X, P, Y);
|
|
if (X != Y) {
|
|
X->sign = FP_NEG;
|
|
}
|
|
return err;
|
|
} else {
|
|
/* Positive exponent so just exptmod */
|
|
return _fp_exptmod(G, X, P, Y);
|
|
}
|
|
}
|
|
|
|
/* $Source: /cvs/libtom/tomsfastmath/src/exptmod/fp_exptmod.c,v $ */
|
|
/* $Revision: 1.1 $ */
|
|
/* $Date: 2006/12/31 21:25:53 $ */
|