574 lines
17 KiB
Rust
574 lines
17 KiB
Rust
use indexmap::{IndexMap, IndexSet};
|
|
use itertools::Itertools;
|
|
|
|
use quickcheck::Arbitrary;
|
|
use quickcheck::Gen;
|
|
use quickcheck::QuickCheck;
|
|
use quickcheck::TestResult;
|
|
|
|
use fnv::FnvHasher;
|
|
use std::hash::{BuildHasher, BuildHasherDefault};
|
|
type FnvBuilder = BuildHasherDefault<FnvHasher>;
|
|
type IndexMapFnv<K, V> = IndexMap<K, V, FnvBuilder>;
|
|
|
|
use std::cmp::min;
|
|
use std::collections::HashMap;
|
|
use std::collections::HashSet;
|
|
use std::fmt::Debug;
|
|
use std::hash::Hash;
|
|
use std::ops::Bound;
|
|
use std::ops::Deref;
|
|
|
|
use indexmap::map::Entry as OEntry;
|
|
use std::collections::hash_map::Entry as HEntry;
|
|
|
|
fn set<'a, T: 'a, I>(iter: I) -> HashSet<T>
|
|
where
|
|
I: IntoIterator<Item = &'a T>,
|
|
T: Copy + Hash + Eq,
|
|
{
|
|
iter.into_iter().copied().collect()
|
|
}
|
|
|
|
fn indexmap<'a, T: 'a, I>(iter: I) -> IndexMap<T, ()>
|
|
where
|
|
I: IntoIterator<Item = &'a T>,
|
|
T: Copy + Hash + Eq,
|
|
{
|
|
IndexMap::from_iter(iter.into_iter().copied().map(|k| (k, ())))
|
|
}
|
|
|
|
// Helper macro to allow us to use smaller quickcheck limits under miri.
|
|
macro_rules! quickcheck_limit {
|
|
(@as_items $($i:item)*) => ($($i)*);
|
|
{
|
|
$(
|
|
$(#[$m:meta])*
|
|
fn $fn_name:ident($($arg_name:ident : $arg_ty:ty),*) -> $ret:ty {
|
|
$($code:tt)*
|
|
}
|
|
)*
|
|
} => (
|
|
quickcheck::quickcheck! {
|
|
@as_items
|
|
$(
|
|
#[test]
|
|
$(#[$m])*
|
|
fn $fn_name() {
|
|
fn prop($($arg_name: $arg_ty),*) -> $ret {
|
|
$($code)*
|
|
}
|
|
let mut quickcheck = QuickCheck::new();
|
|
if cfg!(miri) {
|
|
quickcheck = quickcheck
|
|
.gen(Gen::new(10))
|
|
.tests(10)
|
|
.max_tests(100);
|
|
}
|
|
|
|
quickcheck.quickcheck(prop as fn($($arg_ty),*) -> $ret);
|
|
}
|
|
)*
|
|
}
|
|
)
|
|
}
|
|
|
|
quickcheck_limit! {
|
|
fn contains(insert: Vec<u32>) -> bool {
|
|
let mut map = IndexMap::new();
|
|
for &key in &insert {
|
|
map.insert(key, ());
|
|
}
|
|
insert.iter().all(|&key| map.get(&key).is_some())
|
|
}
|
|
|
|
fn contains_not(insert: Vec<u8>, not: Vec<u8>) -> bool {
|
|
let mut map = IndexMap::new();
|
|
for &key in &insert {
|
|
map.insert(key, ());
|
|
}
|
|
let nots = &set(¬) - &set(&insert);
|
|
nots.iter().all(|&key| map.get(&key).is_none())
|
|
}
|
|
|
|
fn insert_remove(insert: Vec<u8>, remove: Vec<u8>) -> bool {
|
|
let mut map = IndexMap::new();
|
|
for &key in &insert {
|
|
map.insert(key, ());
|
|
}
|
|
for &key in &remove {
|
|
map.swap_remove(&key);
|
|
}
|
|
let elements = &set(&insert) - &set(&remove);
|
|
map.len() == elements.len() && map.iter().count() == elements.len() &&
|
|
elements.iter().all(|k| map.get(k).is_some())
|
|
}
|
|
|
|
fn insertion_order(insert: Vec<u32>) -> bool {
|
|
let mut map = IndexMap::new();
|
|
for &key in &insert {
|
|
map.insert(key, ());
|
|
}
|
|
itertools::assert_equal(insert.iter().unique(), map.keys());
|
|
true
|
|
}
|
|
|
|
fn pop(insert: Vec<u8>) -> bool {
|
|
let mut map = IndexMap::new();
|
|
for &key in &insert {
|
|
map.insert(key, ());
|
|
}
|
|
let mut pops = Vec::new();
|
|
while let Some((key, _v)) = map.pop() {
|
|
pops.push(key);
|
|
}
|
|
pops.reverse();
|
|
|
|
itertools::assert_equal(insert.iter().unique(), &pops);
|
|
true
|
|
}
|
|
|
|
fn with_cap(template: Vec<()>) -> bool {
|
|
let cap = template.len();
|
|
let map: IndexMap<u8, u8> = IndexMap::with_capacity(cap);
|
|
println!("wish: {}, got: {} (diff: {})", cap, map.capacity(), map.capacity() as isize - cap as isize);
|
|
map.capacity() >= cap
|
|
}
|
|
|
|
fn drain_full(insert: Vec<u8>) -> bool {
|
|
let mut map = IndexMap::new();
|
|
for &key in &insert {
|
|
map.insert(key, ());
|
|
}
|
|
let mut clone = map.clone();
|
|
let drained = clone.drain(..);
|
|
for (key, _) in drained {
|
|
map.swap_remove(&key);
|
|
}
|
|
map.is_empty()
|
|
}
|
|
|
|
fn drain_bounds(insert: Vec<u8>, range: (Bound<usize>, Bound<usize>)) -> TestResult {
|
|
let mut map = IndexMap::new();
|
|
for &key in &insert {
|
|
map.insert(key, ());
|
|
}
|
|
|
|
// First see if `Vec::drain` is happy with this range.
|
|
let result = std::panic::catch_unwind(|| {
|
|
let mut keys: Vec<u8> = map.keys().copied().collect();
|
|
keys.drain(range);
|
|
keys
|
|
});
|
|
|
|
if let Ok(keys) = result {
|
|
map.drain(range);
|
|
// Check that our `drain` matches the same key order.
|
|
assert!(map.keys().eq(&keys));
|
|
// Check that hash lookups all work too.
|
|
assert!(keys.iter().all(|key| map.contains_key(key)));
|
|
TestResult::passed()
|
|
} else {
|
|
// If `Vec::drain` panicked, so should we.
|
|
TestResult::must_fail(move || { map.drain(range); })
|
|
}
|
|
}
|
|
|
|
fn shift_remove(insert: Vec<u8>, remove: Vec<u8>) -> bool {
|
|
let mut map = IndexMap::new();
|
|
for &key in &insert {
|
|
map.insert(key, ());
|
|
}
|
|
for &key in &remove {
|
|
map.shift_remove(&key);
|
|
}
|
|
let elements = &set(&insert) - &set(&remove);
|
|
|
|
// Check that order is preserved after removals
|
|
let mut iter = map.keys();
|
|
for &key in insert.iter().unique() {
|
|
if elements.contains(&key) {
|
|
assert_eq!(Some(&key), iter.next());
|
|
}
|
|
}
|
|
|
|
map.len() == elements.len() && map.iter().count() == elements.len() &&
|
|
elements.iter().all(|k| map.get(k).is_some())
|
|
}
|
|
|
|
fn indexing(insert: Vec<u8>) -> bool {
|
|
let mut map: IndexMap<_, _> = insert.into_iter().map(|x| (x, x)).collect();
|
|
let set: IndexSet<_> = map.keys().copied().collect();
|
|
assert_eq!(map.len(), set.len());
|
|
|
|
for (i, &key) in set.iter().enumerate() {
|
|
assert_eq!(map.get_index(i), Some((&key, &key)));
|
|
assert_eq!(set.get_index(i), Some(&key));
|
|
assert_eq!(map[i], key);
|
|
assert_eq!(set[i], key);
|
|
|
|
*map.get_index_mut(i).unwrap().1 >>= 1;
|
|
map[i] <<= 1;
|
|
}
|
|
|
|
set.iter().enumerate().all(|(i, &key)| {
|
|
let value = key & !1;
|
|
map[&key] == value && map[i] == value
|
|
})
|
|
}
|
|
|
|
// Use `u8` test indices so quickcheck is less likely to go out of bounds.
|
|
fn swap_indices(vec: Vec<u8>, a: u8, b: u8) -> TestResult {
|
|
let mut set = IndexSet::<u8>::from_iter(vec);
|
|
let a = usize::from(a);
|
|
let b = usize::from(b);
|
|
|
|
if a >= set.len() || b >= set.len() {
|
|
return TestResult::discard();
|
|
}
|
|
|
|
let mut vec = Vec::from_iter(set.iter().cloned());
|
|
vec.swap(a, b);
|
|
|
|
set.swap_indices(a, b);
|
|
|
|
// Check both iteration order and hash lookups
|
|
assert!(set.iter().eq(vec.iter()));
|
|
assert!(vec.iter().enumerate().all(|(i, x)| {
|
|
set.get_index_of(x) == Some(i)
|
|
}));
|
|
TestResult::passed()
|
|
}
|
|
|
|
// Use `u8` test indices so quickcheck is less likely to go out of bounds.
|
|
fn move_index(vec: Vec<u8>, from: u8, to: u8) -> TestResult {
|
|
let mut set = IndexSet::<u8>::from_iter(vec);
|
|
let from = usize::from(from);
|
|
let to = usize::from(to);
|
|
|
|
if from >= set.len() || to >= set.len() {
|
|
return TestResult::discard();
|
|
}
|
|
|
|
let mut vec = Vec::from_iter(set.iter().cloned());
|
|
let x = vec.remove(from);
|
|
vec.insert(to, x);
|
|
|
|
set.move_index(from, to);
|
|
|
|
// Check both iteration order and hash lookups
|
|
assert!(set.iter().eq(vec.iter()));
|
|
assert!(vec.iter().enumerate().all(|(i, x)| {
|
|
set.get_index_of(x) == Some(i)
|
|
}));
|
|
TestResult::passed()
|
|
}
|
|
}
|
|
|
|
use crate::Op::*;
|
|
#[derive(Copy, Clone, Debug)]
|
|
enum Op<K, V> {
|
|
Add(K, V),
|
|
Remove(K),
|
|
AddEntry(K, V),
|
|
RemoveEntry(K),
|
|
}
|
|
|
|
impl<K, V> Arbitrary for Op<K, V>
|
|
where
|
|
K: Arbitrary,
|
|
V: Arbitrary,
|
|
{
|
|
fn arbitrary(g: &mut Gen) -> Self {
|
|
match u32::arbitrary(g) % 4 {
|
|
0 => Add(K::arbitrary(g), V::arbitrary(g)),
|
|
1 => AddEntry(K::arbitrary(g), V::arbitrary(g)),
|
|
2 => Remove(K::arbitrary(g)),
|
|
_ => RemoveEntry(K::arbitrary(g)),
|
|
}
|
|
}
|
|
}
|
|
|
|
fn do_ops<K, V, S>(ops: &[Op<K, V>], a: &mut IndexMap<K, V, S>, b: &mut HashMap<K, V>)
|
|
where
|
|
K: Hash + Eq + Clone,
|
|
V: Clone,
|
|
S: BuildHasher,
|
|
{
|
|
for op in ops {
|
|
match *op {
|
|
Add(ref k, ref v) => {
|
|
a.insert(k.clone(), v.clone());
|
|
b.insert(k.clone(), v.clone());
|
|
}
|
|
AddEntry(ref k, ref v) => {
|
|
a.entry(k.clone()).or_insert_with(|| v.clone());
|
|
b.entry(k.clone()).or_insert_with(|| v.clone());
|
|
}
|
|
Remove(ref k) => {
|
|
a.swap_remove(k);
|
|
b.remove(k);
|
|
}
|
|
RemoveEntry(ref k) => {
|
|
if let OEntry::Occupied(ent) = a.entry(k.clone()) {
|
|
ent.swap_remove_entry();
|
|
}
|
|
if let HEntry::Occupied(ent) = b.entry(k.clone()) {
|
|
ent.remove_entry();
|
|
}
|
|
}
|
|
}
|
|
//println!("{:?}", a);
|
|
}
|
|
}
|
|
|
|
fn assert_maps_equivalent<K, V>(a: &IndexMap<K, V>, b: &HashMap<K, V>) -> bool
|
|
where
|
|
K: Hash + Eq + Debug,
|
|
V: Eq + Debug,
|
|
{
|
|
assert_eq!(a.len(), b.len());
|
|
assert_eq!(a.iter().next().is_some(), b.iter().next().is_some());
|
|
for key in a.keys() {
|
|
assert!(b.contains_key(key), "b does not contain {:?}", key);
|
|
}
|
|
for key in b.keys() {
|
|
assert!(a.get(key).is_some(), "a does not contain {:?}", key);
|
|
}
|
|
for key in a.keys() {
|
|
assert_eq!(a[key], b[key]);
|
|
}
|
|
true
|
|
}
|
|
|
|
quickcheck_limit! {
|
|
fn operations_i8(ops: Large<Vec<Op<i8, i8>>>) -> bool {
|
|
let mut map = IndexMap::new();
|
|
let mut reference = HashMap::new();
|
|
do_ops(&ops, &mut map, &mut reference);
|
|
assert_maps_equivalent(&map, &reference)
|
|
}
|
|
|
|
fn operations_string(ops: Vec<Op<Alpha, i8>>) -> bool {
|
|
let mut map = IndexMap::new();
|
|
let mut reference = HashMap::new();
|
|
do_ops(&ops, &mut map, &mut reference);
|
|
assert_maps_equivalent(&map, &reference)
|
|
}
|
|
|
|
fn keys_values(ops: Large<Vec<Op<i8, i8>>>) -> bool {
|
|
let mut map = IndexMap::new();
|
|
let mut reference = HashMap::new();
|
|
do_ops(&ops, &mut map, &mut reference);
|
|
let mut visit = IndexMap::new();
|
|
for (k, v) in map.keys().zip(map.values()) {
|
|
assert_eq!(&map[k], v);
|
|
assert!(!visit.contains_key(k));
|
|
visit.insert(*k, *v);
|
|
}
|
|
assert_eq!(visit.len(), reference.len());
|
|
true
|
|
}
|
|
|
|
fn keys_values_mut(ops: Large<Vec<Op<i8, i8>>>) -> bool {
|
|
let mut map = IndexMap::new();
|
|
let mut reference = HashMap::new();
|
|
do_ops(&ops, &mut map, &mut reference);
|
|
let mut visit = IndexMap::new();
|
|
let keys = Vec::from_iter(map.keys().copied());
|
|
for (k, v) in keys.iter().zip(map.values_mut()) {
|
|
assert_eq!(&reference[k], v);
|
|
assert!(!visit.contains_key(k));
|
|
visit.insert(*k, *v);
|
|
}
|
|
assert_eq!(visit.len(), reference.len());
|
|
true
|
|
}
|
|
|
|
fn equality(ops1: Vec<Op<i8, i8>>, removes: Vec<usize>) -> bool {
|
|
let mut map = IndexMap::new();
|
|
let mut reference = HashMap::new();
|
|
do_ops(&ops1, &mut map, &mut reference);
|
|
let mut ops2 = ops1.clone();
|
|
for &r in &removes {
|
|
if !ops2.is_empty() {
|
|
let i = r % ops2.len();
|
|
ops2.remove(i);
|
|
}
|
|
}
|
|
let mut map2 = IndexMapFnv::default();
|
|
let mut reference2 = HashMap::new();
|
|
do_ops(&ops2, &mut map2, &mut reference2);
|
|
assert_eq!(map == map2, reference == reference2);
|
|
true
|
|
}
|
|
|
|
fn retain_ordered(keys: Large<Vec<i8>>, remove: Large<Vec<i8>>) -> () {
|
|
let mut map = indexmap(keys.iter());
|
|
let initial_map = map.clone(); // deduplicated in-order input
|
|
let remove_map = indexmap(remove.iter());
|
|
let keys_s = set(keys.iter());
|
|
let remove_s = set(remove.iter());
|
|
let answer = &keys_s - &remove_s;
|
|
map.retain(|k, _| !remove_map.contains_key(k));
|
|
|
|
// check the values
|
|
assert_eq!(map.len(), answer.len());
|
|
for key in &answer {
|
|
assert!(map.contains_key(key));
|
|
}
|
|
// check the order
|
|
itertools::assert_equal(map.keys(), initial_map.keys().filter(|&k| !remove_map.contains_key(k)));
|
|
}
|
|
|
|
fn sort_1(keyvals: Large<Vec<(i8, i8)>>) -> () {
|
|
let mut map: IndexMap<_, _> = IndexMap::from_iter(keyvals.to_vec());
|
|
let mut answer = keyvals.0;
|
|
answer.sort_by_key(|t| t.0);
|
|
|
|
// reverse dedup: Because IndexMap::from_iter keeps the last value for
|
|
// identical keys
|
|
answer.reverse();
|
|
answer.dedup_by_key(|t| t.0);
|
|
answer.reverse();
|
|
|
|
map.sort_by(|k1, _, k2, _| Ord::cmp(k1, k2));
|
|
|
|
// check it contains all the values it should
|
|
for &(key, val) in &answer {
|
|
assert_eq!(map[&key], val);
|
|
}
|
|
|
|
// check the order
|
|
|
|
let mapv = Vec::from_iter(map);
|
|
assert_eq!(answer, mapv);
|
|
|
|
}
|
|
|
|
fn sort_2(keyvals: Large<Vec<(i8, i8)>>) -> () {
|
|
let mut map: IndexMap<_, _> = IndexMap::from_iter(keyvals.to_vec());
|
|
map.sort_by(|_, v1, _, v2| Ord::cmp(v1, v2));
|
|
assert_sorted_by_key(map, |t| t.1);
|
|
}
|
|
|
|
fn reverse(keyvals: Large<Vec<(i8, i8)>>) -> () {
|
|
let mut map: IndexMap<_, _> = IndexMap::from_iter(keyvals.to_vec());
|
|
|
|
fn generate_answer(input: &Vec<(i8, i8)>) -> Vec<(i8, i8)> {
|
|
// to mimic what `IndexMap::from_iter` does:
|
|
// need to get (A) the unique keys in forward order, and (B) the
|
|
// last value of each of those keys.
|
|
|
|
// create (A): an iterable that yields the unique keys in ltr order
|
|
let mut seen_keys = HashSet::new();
|
|
let unique_keys_forward = input.iter().filter_map(move |(k, _)| {
|
|
if seen_keys.contains(k) { None }
|
|
else { seen_keys.insert(*k); Some(*k) }
|
|
});
|
|
|
|
// create (B): a mapping of keys to the last value seen for that key
|
|
// this is the same as reversing the input and taking the first
|
|
// value seen for that key!
|
|
let mut last_val_per_key = HashMap::new();
|
|
for &(k, v) in input.iter().rev() {
|
|
if !last_val_per_key.contains_key(&k) {
|
|
last_val_per_key.insert(k, v);
|
|
}
|
|
}
|
|
|
|
// iterate over the keys in (A) in order, and match each one with
|
|
// the corresponding last value from (B)
|
|
let mut ans: Vec<_> = unique_keys_forward
|
|
.map(|k| (k, *last_val_per_key.get(&k).unwrap()))
|
|
.collect();
|
|
|
|
// finally, since this test is testing `.reverse()`, reverse the
|
|
// answer in-place
|
|
ans.reverse();
|
|
|
|
ans
|
|
}
|
|
|
|
let answer = generate_answer(&keyvals.0);
|
|
|
|
// perform the work
|
|
map.reverse();
|
|
|
|
// check it contains all the values it should
|
|
for &(key, val) in &answer {
|
|
assert_eq!(map[&key], val);
|
|
}
|
|
|
|
// check the order
|
|
let mapv = Vec::from_iter(map);
|
|
assert_eq!(answer, mapv);
|
|
}
|
|
}
|
|
|
|
fn assert_sorted_by_key<I, Key, X>(iterable: I, key: Key)
|
|
where
|
|
I: IntoIterator,
|
|
I::Item: Ord + Clone + Debug,
|
|
Key: Fn(&I::Item) -> X,
|
|
X: Ord,
|
|
{
|
|
let input = Vec::from_iter(iterable);
|
|
let mut sorted = input.clone();
|
|
sorted.sort_by_key(key);
|
|
assert_eq!(input, sorted);
|
|
}
|
|
|
|
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
|
|
struct Alpha(String);
|
|
|
|
impl Deref for Alpha {
|
|
type Target = String;
|
|
fn deref(&self) -> &String {
|
|
&self.0
|
|
}
|
|
}
|
|
|
|
const ALPHABET: &[u8] = b"abcdefghijklmnopqrstuvwxyz";
|
|
|
|
impl Arbitrary for Alpha {
|
|
fn arbitrary(g: &mut Gen) -> Self {
|
|
let len = usize::arbitrary(g) % g.size();
|
|
let len = min(len, 16);
|
|
Alpha(
|
|
(0..len)
|
|
.map(|_| ALPHABET[usize::arbitrary(g) % ALPHABET.len()] as char)
|
|
.collect(),
|
|
)
|
|
}
|
|
|
|
fn shrink(&self) -> Box<dyn Iterator<Item = Self>> {
|
|
Box::new((**self).shrink().map(Alpha))
|
|
}
|
|
}
|
|
|
|
/// quickcheck Arbitrary adaptor -- make a larger vec
|
|
#[derive(Clone, Debug)]
|
|
struct Large<T>(T);
|
|
|
|
impl<T> Deref for Large<T> {
|
|
type Target = T;
|
|
fn deref(&self) -> &T {
|
|
&self.0
|
|
}
|
|
}
|
|
|
|
impl<T> Arbitrary for Large<Vec<T>>
|
|
where
|
|
T: Arbitrary,
|
|
{
|
|
fn arbitrary(g: &mut Gen) -> Self {
|
|
let len = usize::arbitrary(g) % (g.size() * 10);
|
|
Large((0..len).map(|_| T::arbitrary(g)).collect())
|
|
}
|
|
|
|
fn shrink(&self) -> Box<dyn Iterator<Item = Self>> {
|
|
Box::new((**self).shrink().map(Large))
|
|
}
|
|
}
|