194 lines
5.9 KiB
Rust
194 lines
5.9 KiB
Rust
// Adapted from https://github.com/Alexhuszagh/rust-lexical.
|
|
|
|
//! Algorithms to efficiently convert strings to floats.
|
|
|
|
use super::bhcomp::*;
|
|
use super::cached::*;
|
|
use super::errors::*;
|
|
use super::float::ExtendedFloat;
|
|
use super::num::*;
|
|
use super::small_powers::*;
|
|
|
|
// FAST
|
|
// ----
|
|
|
|
/// Convert mantissa to exact value for a non-base2 power.
|
|
///
|
|
/// Returns the resulting float and if the value can be represented exactly.
|
|
pub(crate) fn fast_path<F>(mantissa: u64, exponent: i32) -> Option<F>
|
|
where
|
|
F: Float,
|
|
{
|
|
// `mantissa >> (F::MANTISSA_SIZE+1) != 0` effectively checks if the
|
|
// value has a no bits above the hidden bit, which is what we want.
|
|
let (min_exp, max_exp) = F::exponent_limit();
|
|
let shift_exp = F::mantissa_limit();
|
|
let mantissa_size = F::MANTISSA_SIZE + 1;
|
|
if mantissa == 0 {
|
|
Some(F::ZERO)
|
|
} else if mantissa >> mantissa_size != 0 {
|
|
// Would require truncation of the mantissa.
|
|
None
|
|
} else if exponent == 0 {
|
|
// 0 exponent, same as value, exact representation.
|
|
let float = F::as_cast(mantissa);
|
|
Some(float)
|
|
} else if exponent >= min_exp && exponent <= max_exp {
|
|
// Value can be exactly represented, return the value.
|
|
// Do not use powi, since powi can incrementally introduce
|
|
// error.
|
|
let float = F::as_cast(mantissa);
|
|
Some(float.pow10(exponent))
|
|
} else if exponent >= 0 && exponent <= max_exp + shift_exp {
|
|
// Check to see if we have a disguised fast-path, where the
|
|
// number of digits in the mantissa is very small, but and
|
|
// so digits can be shifted from the exponent to the mantissa.
|
|
// https://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
|
|
let small_powers = POW10_64;
|
|
let shift = exponent - max_exp;
|
|
let power = small_powers[shift as usize];
|
|
|
|
// Compute the product of the power, if it overflows,
|
|
// prematurely return early, otherwise, if we didn't overshoot,
|
|
// we can get an exact value.
|
|
let value = mantissa.checked_mul(power)?;
|
|
if value >> mantissa_size != 0 {
|
|
None
|
|
} else {
|
|
// Use powi, since it's correct, and faster on
|
|
// the fast-path.
|
|
let float = F::as_cast(value);
|
|
Some(float.pow10(max_exp))
|
|
}
|
|
} else {
|
|
// Cannot be exactly represented, exponent too small or too big,
|
|
// would require truncation.
|
|
None
|
|
}
|
|
}
|
|
|
|
// MODERATE
|
|
// --------
|
|
|
|
/// Multiply the floating-point by the exponent.
|
|
///
|
|
/// Multiply by pre-calculated powers of the base, modify the extended-
|
|
/// float, and return if new value and if the value can be represented
|
|
/// accurately.
|
|
fn multiply_exponent_extended<F>(fp: &mut ExtendedFloat, exponent: i32, truncated: bool) -> bool
|
|
where
|
|
F: Float,
|
|
{
|
|
let powers = ExtendedFloat::get_powers();
|
|
let exponent = exponent.saturating_add(powers.bias);
|
|
let small_index = exponent % powers.step;
|
|
let large_index = exponent / powers.step;
|
|
if exponent < 0 {
|
|
// Guaranteed underflow (assign 0).
|
|
fp.mant = 0;
|
|
true
|
|
} else if large_index as usize >= powers.large.len() {
|
|
// Overflow (assign infinity)
|
|
fp.mant = 1 << 63;
|
|
fp.exp = 0x7FF;
|
|
true
|
|
} else {
|
|
// Within the valid exponent range, multiply by the large and small
|
|
// exponents and return the resulting value.
|
|
|
|
// Track errors to as a factor of unit in last-precision.
|
|
let mut errors: u32 = 0;
|
|
if truncated {
|
|
errors += u64::error_halfscale();
|
|
}
|
|
|
|
// Multiply by the small power.
|
|
// Check if we can directly multiply by an integer, if not,
|
|
// use extended-precision multiplication.
|
|
match fp
|
|
.mant
|
|
.overflowing_mul(powers.get_small_int(small_index as usize))
|
|
{
|
|
// Overflow, multiplication unsuccessful, go slow path.
|
|
(_, true) => {
|
|
fp.normalize();
|
|
fp.imul(&powers.get_small(small_index as usize));
|
|
errors += u64::error_halfscale();
|
|
}
|
|
// No overflow, multiplication successful.
|
|
(mant, false) => {
|
|
fp.mant = mant;
|
|
fp.normalize();
|
|
}
|
|
}
|
|
|
|
// Multiply by the large power
|
|
fp.imul(&powers.get_large(large_index as usize));
|
|
if errors > 0 {
|
|
errors += 1;
|
|
}
|
|
errors += u64::error_halfscale();
|
|
|
|
// Normalize the floating point (and the errors).
|
|
let shift = fp.normalize();
|
|
errors <<= shift;
|
|
|
|
u64::error_is_accurate::<F>(errors, fp)
|
|
}
|
|
}
|
|
|
|
/// Create a precise native float using an intermediate extended-precision float.
|
|
///
|
|
/// Return the float approximation and if the value can be accurately
|
|
/// represented with mantissa bits of precision.
|
|
#[inline]
|
|
pub(crate) fn moderate_path<F>(
|
|
mantissa: u64,
|
|
exponent: i32,
|
|
truncated: bool,
|
|
) -> (ExtendedFloat, bool)
|
|
where
|
|
F: Float,
|
|
{
|
|
let mut fp = ExtendedFloat {
|
|
mant: mantissa,
|
|
exp: 0,
|
|
};
|
|
let valid = multiply_exponent_extended::<F>(&mut fp, exponent, truncated);
|
|
(fp, valid)
|
|
}
|
|
|
|
// FALLBACK
|
|
// --------
|
|
|
|
/// Fallback path when the fast path does not work.
|
|
///
|
|
/// Uses the moderate path, if applicable, otherwise, uses the slow path
|
|
/// as required.
|
|
pub(crate) fn fallback_path<F>(
|
|
integer: &[u8],
|
|
fraction: &[u8],
|
|
mantissa: u64,
|
|
exponent: i32,
|
|
mantissa_exponent: i32,
|
|
truncated: bool,
|
|
) -> F
|
|
where
|
|
F: Float,
|
|
{
|
|
// Moderate path (use an extended 80-bit representation).
|
|
let (fp, valid) = moderate_path::<F>(mantissa, mantissa_exponent, truncated);
|
|
if valid {
|
|
return fp.into_float::<F>();
|
|
}
|
|
|
|
// Slow path, fast path didn't work.
|
|
let b = fp.into_downward_float::<F>();
|
|
if b.is_special() {
|
|
// We have a non-finite number, we get to leave early.
|
|
b
|
|
} else {
|
|
bhcomp(b, integer, fraction, exponent)
|
|
}
|
|
}
|