Files
denyhosts/clamav/libclamav_rust/.cargo/vendor/jpeg-decoder/src/huffman.rs
2023-01-14 18:28:39 +08:00

347 lines
13 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use alloc::borrow::ToOwned;
use alloc::vec;
use alloc::vec::Vec;
use core::iter;
use std::io::Read;
use crate::read_u8;
use crate::error::{Error, Result};
use crate::marker::Marker;
use crate::parser::ScanInfo;
const LUT_BITS: u8 = 8;
#[derive(Debug)]
pub struct HuffmanDecoder {
bits: u64,
num_bits: u8,
marker: Option<Marker>,
}
impl HuffmanDecoder {
pub fn new() -> HuffmanDecoder {
HuffmanDecoder {
bits: 0,
num_bits: 0,
marker: None,
}
}
// Section F.2.2.3
// Figure F.16
pub fn decode<R: Read>(&mut self, reader: &mut R, table: &HuffmanTable) -> Result<u8> {
if self.num_bits < 16 {
self.read_bits(reader)?;
}
let (value, size) = table.lut[self.peek_bits(LUT_BITS) as usize];
if size > 0 {
self.consume_bits(size);
Ok(value)
}
else {
let bits = self.peek_bits(16);
for i in LUT_BITS .. 16 {
let code = (bits >> (15 - i)) as i32;
if code <= table.maxcode[i as usize] {
self.consume_bits(i + 1);
let index = (code + table.delta[i as usize]) as usize;
return Ok(table.values[index]);
}
}
Err(Error::Format("failed to decode huffman code".to_owned()))
}
}
pub fn decode_fast_ac<R: Read>(&mut self, reader: &mut R, table: &HuffmanTable) -> Result<Option<(i16, u8)>> {
if let Some(ref ac_lut) = table.ac_lut {
if self.num_bits < LUT_BITS {
self.read_bits(reader)?;
}
let (value, run_size) = ac_lut[self.peek_bits(LUT_BITS) as usize];
if run_size != 0 {
let run = run_size >> 4;
let size = run_size & 0x0f;
self.consume_bits(size);
return Ok(Some((value, run)));
}
}
Ok(None)
}
#[inline]
pub fn get_bits<R: Read>(&mut self, reader: &mut R, count: u8) -> Result<u16> {
if self.num_bits < count {
self.read_bits(reader)?;
}
let bits = self.peek_bits(count);
self.consume_bits(count);
Ok(bits)
}
#[inline]
pub fn receive_extend<R: Read>(&mut self, reader: &mut R, count: u8) -> Result<i16> {
let value = self.get_bits(reader, count)?;
Ok(extend(value, count))
}
pub fn reset(&mut self) {
self.bits = 0;
self.num_bits = 0;
}
pub fn take_marker<R: Read>(&mut self, reader: &mut R) -> Result<Option<Marker>> {
self.read_bits(reader).map(|_| self.marker.take())
}
#[inline]
fn peek_bits(&mut self, count: u8) -> u16 {
debug_assert!(count <= 16);
debug_assert!(self.num_bits >= count);
((self.bits >> (64 - count)) & ((1 << count) - 1)) as u16
}
#[inline]
fn consume_bits(&mut self, count: u8) {
debug_assert!(self.num_bits >= count);
self.bits <<= count as usize;
self.num_bits -= count;
}
fn read_bits<R: Read>(&mut self, reader: &mut R) -> Result<()> {
while self.num_bits <= 56 {
// Fill with zero bits if we have reached the end.
let byte = match self.marker {
Some(_) => 0,
None => read_u8(reader)?,
};
if byte == 0xFF {
let mut next_byte = read_u8(reader)?;
// Check for byte stuffing.
if next_byte != 0x00 {
// We seem to have reached the end of entropy-coded data and encountered a
// marker. Since we can't put data back into the reader, we have to continue
// reading to identify the marker so we can pass it on.
// Section B.1.1.2
// "Any marker may optionally be preceded by any number of fill bytes, which are bytes assigned code XFF."
while next_byte == 0xFF {
next_byte = read_u8(reader)?;
}
match next_byte {
0x00 => return Err(Error::Format("FF 00 found where marker was expected".to_owned())),
_ => self.marker = Some(Marker::from_u8(next_byte).unwrap()),
}
continue;
}
}
self.bits |= (byte as u64) << (56 - self.num_bits);
self.num_bits += 8;
}
Ok(())
}
}
// Section F.2.2.1
// Figure F.12
fn extend(value: u16, count: u8) -> i16 {
let vt = 1 << (count as u16 - 1);
if value < vt {
value as i16 + (-1 << count as i16) + 1
} else {
value as i16
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum HuffmanTableClass {
DC,
AC,
}
pub struct HuffmanTable {
values: Vec<u8>,
delta: [i32; 16],
maxcode: [i32; 16],
lut: [(u8, u8); 1 << LUT_BITS],
ac_lut: Option<[(i16, u8); 1 << LUT_BITS]>,
}
impl HuffmanTable {
pub fn new(bits: &[u8; 16], values: &[u8], class: HuffmanTableClass) -> Result<HuffmanTable> {
let (huffcode, huffsize) = derive_huffman_codes(bits)?;
// Section F.2.2.3
// Figure F.15
// delta[i] is set to VALPTR(I) - MINCODE(I)
let mut delta = [0i32; 16];
let mut maxcode = [-1i32; 16];
let mut j = 0;
for i in 0 .. 16 {
if bits[i] != 0 {
delta[i] = j as i32 - huffcode[j] as i32;
j += bits[i] as usize;
maxcode[i] = huffcode[j - 1] as i32;
}
}
// Build a lookup table for faster decoding.
let mut lut = [(0u8, 0u8); 1 << LUT_BITS];
for (i, &size) in huffsize.iter().enumerate().filter(|&(_, &size)| size <= LUT_BITS) {
let bits_remaining = LUT_BITS - size;
let start = (huffcode[i] << bits_remaining) as usize;
let val = (values[i], size);
for b in &mut lut[start..][..1 << bits_remaining] {
*b = val;
}
}
// Build a lookup table for small AC coefficients which both decodes the value and does the
// equivalent of receive_extend.
let ac_lut = match class {
HuffmanTableClass::DC => None,
HuffmanTableClass::AC => {
let mut table = [(0i16, 0u8); 1 << LUT_BITS];
for (i, &(value, size)) in lut.iter().enumerate() {
let run_length = value >> 4;
let magnitude_category = value & 0x0f;
if magnitude_category > 0 && size + magnitude_category <= LUT_BITS {
let unextended_ac_value = (((i << size) & ((1 << LUT_BITS) - 1)) >> (LUT_BITS - magnitude_category)) as u16;
let ac_value = extend(unextended_ac_value, magnitude_category);
table[i] = (ac_value, (run_length << 4) | (size + magnitude_category));
}
}
Some(table)
},
};
Ok(HuffmanTable {
values: values.to_vec(),
delta,
maxcode,
lut,
ac_lut,
})
}
}
// Section C.2
fn derive_huffman_codes(bits: &[u8; 16]) -> Result<(Vec<u16>, Vec<u8>)> {
// Figure C.1
let huffsize = bits.iter()
.enumerate()
.fold(Vec::new(), |mut acc, (i, &value)| {
acc.extend(iter::repeat((i + 1) as u8).take(value as usize));
acc
});
// Figure C.2
let mut huffcode = vec![0u16; huffsize.len()];
let mut code_size = huffsize[0];
let mut code = 0u32;
for (i, &size) in huffsize.iter().enumerate() {
while code_size < size {
code <<= 1;
code_size += 1;
}
if code >= (1u32 << size) {
return Err(Error::Format("bad huffman code length".to_owned()));
}
huffcode[i] = code as u16;
code += 1;
}
Ok((huffcode, huffsize))
}
// https://www.loc.gov/preservation/digital/formats/fdd/fdd000063.shtml
// "Avery Lee, writing in the rec.video.desktop newsgroup in 2001, commented that "MJPEG, or at
// least the MJPEG in AVIs having the MJPG fourcc, is restricted JPEG with a fixed -- and
// *omitted* -- Huffman table. The JPEG must be YCbCr colorspace, it must be 4:2:2, and it must
// use basic Huffman encoding, not arithmetic or progressive.... You can indeed extract the
// MJPEG frames and decode them with a regular JPEG decoder, but you have to prepend the DHT
// segment to them, or else the decoder won't have any idea how to decompress the data.
// The exact table necessary is given in the OpenDML spec.""
pub fn fill_default_mjpeg_tables(scan: &ScanInfo,
dc_huffman_tables: &mut[Option<HuffmanTable>],
ac_huffman_tables: &mut[Option<HuffmanTable>]) {
// Section K.3.3
if dc_huffman_tables[0].is_none() && scan.dc_table_indices.iter().any(|&i| i == 0) {
// Table K.3
dc_huffman_tables[0] = Some(HuffmanTable::new(
&[0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
&[0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B], HuffmanTableClass::DC).unwrap());
}
if dc_huffman_tables[1].is_none() && scan.dc_table_indices.iter().any(|&i| i == 1) {
// Table K.4
dc_huffman_tables[1] = Some(HuffmanTable::new(
&[0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00],
&[0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B], HuffmanTableClass::DC).unwrap());
}
if ac_huffman_tables[0].is_none() && scan.ac_table_indices.iter().any(|&i| i == 0) {
// Table K.5
ac_huffman_tables[0] = Some(HuffmanTable::new(
&[0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01, 0x7D],
&[0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xA1, 0x08, 0x23, 0x42, 0xB1, 0xC1, 0x15, 0x52, 0xD1, 0xF0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2A, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7,
0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5,
0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE1, 0xE2,
0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
0xF9, 0xFA
], HuffmanTableClass::AC).unwrap());
}
if ac_huffman_tables[1].is_none() && scan.ac_table_indices.iter().any(|&i| i == 1) {
// Table K.6
ac_huffman_tables[1] = Some(HuffmanTable::new(
&[0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04, 0x04, 0x00, 0x01, 0x02, 0x77],
&[0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xA1, 0xB1, 0xC1, 0x09, 0x23, 0x33, 0x52, 0xF0,
0x15, 0x62, 0x72, 0xD1, 0x0A, 0x16, 0x24, 0x34, 0xE1, 0x25, 0xF1, 0x17, 0x18, 0x19, 0x1A, 0x26,
0x27, 0x28, 0x29, 0x2A, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5,
0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3,
0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA,
0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,
0xF9, 0xFA
], HuffmanTableClass::AC).unwrap());
}
}