添加线程池

This commit is contained in:
aixiao 2024-05-14 15:11:08 +08:00
parent ff67d2568b
commit 2e650b5893
10 changed files with 721 additions and 46 deletions

View File

@ -17,7 +17,7 @@ endif
all:forward-tunnel reverse-tunnel
forward-tunnel: forward-tunnel.o
forward-tunnel: forward-tunnel.o thpool.o
$(CC) $(CFLAGS) -o $(forward-tunnel) $^ $(SSH2_LIB) $(LIB)
$(STRIP) forward-tunnel

BIN
forward-tunnel Normal file

Binary file not shown.

View File

@ -1,4 +1,5 @@
#include "forward-tunnel.h"
#include "thpool.h"
const char *keyfile1 = "/home/aixiao/.ssh/id_rsa.pub";
const char *keyfile2 = "/home/aixiao/.ssh/id_rsa";
@ -20,7 +21,7 @@ enum {
AUTH_PUBLICKEY
};
void *forward_tunnel(void *sock_)
void forward_tunnel(void *sock_)
{
int forwardsock = *(int *)sock_;
int rc, i, auth = AUTH_NONE;
@ -42,20 +43,20 @@ void *forward_tunnel(void *sock_)
if (rc) {
fprintf(stderr, "libssh2 initialization failed (%d)\n", rc);
return NULL;
return;
}
/* Connect to SSH server */
sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
if (sock == -1) {
perror("socket");
return NULL;
return;
}
int optval = SO_REUSEADDR;
if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval)) < 0) {
perror("setsockopt");
return NULL;
return;
}
memset(&sin, 0, sizeof(sin));
@ -63,12 +64,12 @@ void *forward_tunnel(void *sock_)
sin.sin_addr.s_addr = inet_addr(server_ssh_ip);
if (INADDR_NONE == sin.sin_addr.s_addr) {
perror("inet_addr");
return NULL;
return;
}
sin.sin_port = htons(server_ssh_port);
if (connect(sock, (struct sockaddr *)(&sin), sizeof(struct sockaddr_in)) != 0) {
fprintf(stderr, "failed to connect!\n");
return NULL;
return;
}
/* Create a session instance */
@ -76,7 +77,7 @@ void *forward_tunnel(void *sock_)
if (!session) {
fprintf(stderr, "Could not initialize SSH session!\n");
return NULL;
return;
}
/* ... start it up. This will trade welcome banners, exchange keys,
@ -85,7 +86,7 @@ void *forward_tunnel(void *sock_)
rc = libssh2_session_handshake(session, sock);
if (rc) {
fprintf(stderr, "Error when starting up SSH session: %d\n", rc);
return NULL;
return;
}
/* At this point we havn't yet authenticated. The first thing to do
@ -214,7 +215,7 @@ shutdown:
close(sock);
libssh2_exit();
return NULL;
return;
}
static char help_info(void)
@ -322,7 +323,6 @@ int main(int argc, char *argv[], char **env)
int _daemon = 0;
int opt;
char *p = NULL;
char *client_ip = NULL;
char optstring[] = ":dr:s:p:l:u:e:h?";
while (-1 != (opt = getopt(argc, argv, optstring))) {
@ -429,49 +429,25 @@ int main(int argc, char *argv[], char **env)
if (-1 == (nice_(-20)))
perror("nice_");
// 多线程设置
pthread_t thread_id = 0;
pthread_attr_t attr;
struct sched_param param;
sigset_t signal_mask;
sigemptyset(&signal_mask);
sigaddset(&signal_mask, SIGPIPE); // 忽略PIPE信号
if (pthread_sigmask(SIG_BLOCK, &signal_mask, NULL) != 0) {
printf("block sigpipe error\n");
}
// 初始化线程属性
pthread_attr_init(&attr);
// 设置线程调度策略为SCHED_FIFO
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);
// 设置线程优先级为50
param.sched_priority = 50;
pthread_attr_setschedparam(&attr, &param);
// 多线程
threadpool thpool = thpool_init(1024);
while (1) {
printf("threads: %d\n", get_threads());
printf("%d\n", get_threads());
server_addr_len = sizeof(server_addr);
forwardsock = accept(listensock, (struct sockaddr *)&sin, &server_addr_len);
if (forwardsock == -1) {
int *forwardsock = (int *)malloc(sizeof(int)); // 分配内存空间保存线程编号
*forwardsock = accept(listensock, (struct sockaddr *)&sin, &server_addr_len);
// 接受连接
if (*forwardsock == -1) {
perror("accept");
goto shutdown;
}
getsockname(forwardsock, (struct sockaddr *)&sin, &server_addr_len);
client_ip = inet_ntoa(sin.sin_addr);
printf("Client IP address: %s\n", client_ip);
client_ip = NULL;
pthread_create(&thread_id, &attr, &forward_tunnel, (void *)&forwardsock);
thpool_add_work(thpool, forward_tunnel, (void *)(uintptr_t) forwardsock);
}
pthread_attr_destroy(&attr);
pthread_join(thread_id, NULL);
pthread_exit(NULL);
thpool_wait(thpool);
thpool_destroy(thpool);
shutdown:
close(forwardsock);
close(listensock);
libssh2_exit();

View File

@ -18,6 +18,7 @@
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/poll.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>

BIN
forward-tunnel.o Normal file

Binary file not shown.

BIN
reverse-tunnel Normal file

Binary file not shown.

BIN
reverse-tunnel.o Normal file

Binary file not shown.

521
thpool.c Normal file
View File

@ -0,0 +1,521 @@
/* ********************************
* Author: Johan Hanssen Seferidis
* License: MIT
* Description: Library providing a threading pool where you can add
* work. For usage, check the thpool.h file or README.md
*
*//** @file thpool.h *//*
*
********************************/
#define _POSIX_C_SOURCE 200809L
#include <unistd.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <errno.h>
#include <time.h>
#if defined(__linux__)
#include <sys/prctl.h>
#endif
#include "thpool.h"
#ifdef THPOOL_DEBUG
#define THPOOL_DEBUG 1
#else
#define THPOOL_DEBUG 0
#endif
#if !defined(DISABLE_PRINT) || defined(THPOOL_DEBUG)
#define err(str) fprintf(stderr, str)
#else
#define err(str)
#endif
static volatile int threads_keepalive;
static volatile int threads_on_hold;
/* ========================== STRUCTURES ============================ */
/* Binary semaphore */
typedef struct bsem {
pthread_mutex_t mutex;
pthread_cond_t cond;
int v;
} bsem;
/* Job */
typedef struct job {
struct job *prev; /* pointer to previous job */
void (*function)(void *arg); /* function pointer */
void *arg; /* function's argument */
} job;
/* Job queue */
typedef struct jobqueue {
pthread_mutex_t rwmutex; /* used for queue r/w access */
job *front; /* pointer to front of queue */
job *rear; /* pointer to rear of queue */
bsem *has_jobs; /* flag as binary semaphore */
int len; /* number of jobs in queue */
} jobqueue;
/* Thread */
typedef struct thread {
int id; /* friendly id */
pthread_t pthread; /* pointer to actual thread */
struct thpool_ *thpool_p; /* access to thpool */
} thread;
/* Threadpool */
typedef struct thpool_ {
thread **threads; /* pointer to threads */
volatile int num_threads_alive; /* threads currently alive */
volatile int num_threads_working; /* threads currently working */
pthread_mutex_t thcount_lock; /* used for thread count etc */
pthread_cond_t threads_all_idle; /* signal to thpool_wait */
jobqueue jobqueue; /* job queue */
} thpool_;
/* ========================== PROTOTYPES ============================ */
static int thread_init(thpool_ * thpool_p, struct thread **thread_p, int id);
static void *thread_do(struct thread *thread_p);
static void thread_hold(int sig_id);
static void thread_destroy(struct thread *thread_p);
static int jobqueue_init(jobqueue * jobqueue_p);
static void jobqueue_clear(jobqueue * jobqueue_p);
static void jobqueue_push(jobqueue * jobqueue_p, struct job *newjob_p);
static struct job *jobqueue_pull(jobqueue * jobqueue_p);
static void jobqueue_destroy(jobqueue * jobqueue_p);
static void bsem_init(struct bsem *bsem_p, int value);
static void bsem_reset(struct bsem *bsem_p);
static void bsem_post(struct bsem *bsem_p);
static void bsem_post_all(struct bsem *bsem_p);
static void bsem_wait(struct bsem *bsem_p);
/* ========================== THREADPOOL ============================ */
/* Initialise thread pool */
struct thpool_ *thpool_init(int num_threads)
{
threads_on_hold = 0;
threads_keepalive = 1;
if (num_threads < 0) {
num_threads = 0;
}
/* Make new thread pool */
thpool_ *thpool_p;
thpool_p = (struct thpool_ *)malloc(sizeof(struct thpool_));
if (thpool_p == NULL) {
err("thpool_init(): Could not allocate memory for thread pool\n");
return NULL;
}
thpool_p->num_threads_alive = 0;
thpool_p->num_threads_working = 0;
/* Initialise the job queue */
if (jobqueue_init(&thpool_p->jobqueue) == -1) {
err("thpool_init(): Could not allocate memory for job queue\n");
free(thpool_p);
return NULL;
}
/* Make threads in pool */
thpool_p->threads = (struct thread **)malloc(num_threads * sizeof(struct thread *));
if (thpool_p->threads == NULL) {
err("thpool_init(): Could not allocate memory for threads\n");
jobqueue_destroy(&thpool_p->jobqueue);
free(thpool_p);
return NULL;
}
pthread_mutex_init(&(thpool_p->thcount_lock), NULL);
pthread_cond_init(&thpool_p->threads_all_idle, NULL);
/* Thread init */
int n;
for (n = 0; n < num_threads; n++) {
thread_init(thpool_p, &thpool_p->threads[n], n);
#if THPOOL_DEBUG
printf("THPOOL_DEBUG: Created thread %d in pool \n", n);
#endif
}
/* Wait for threads to initialize */
while (thpool_p->num_threads_alive != num_threads) {
}
return thpool_p;
}
/* Add work to the thread pool */
int thpool_add_work(thpool_ * thpool_p, void (*function_p)(void *), void *arg_p)
{
job *newjob;
newjob = (struct job *)malloc(sizeof(struct job));
if (newjob == NULL) {
err("thpool_add_work(): Could not allocate memory for new job\n");
return -1;
}
/* add function and argument */
newjob->function = function_p;
newjob->arg = arg_p;
/* add job to queue */
jobqueue_push(&thpool_p->jobqueue, newjob);
return 0;
}
/* Wait until all jobs have finished */
void thpool_wait(thpool_ * thpool_p)
{
pthread_mutex_lock(&thpool_p->thcount_lock);
while (thpool_p->jobqueue.len || thpool_p->num_threads_working) {
pthread_cond_wait(&thpool_p->threads_all_idle, &thpool_p->thcount_lock);
}
pthread_mutex_unlock(&thpool_p->thcount_lock);
}
/* Destroy the threadpool */
void thpool_destroy(thpool_ * thpool_p)
{
/* No need to destory if it's NULL */
if (thpool_p == NULL)
return;
volatile int threads_total = thpool_p->num_threads_alive;
/* End each thread 's infinite loop */
threads_keepalive = 0;
/* Give one second to kill idle threads */
double TIMEOUT = 1.0;
time_t start, end;
double tpassed = 0.0;
time(&start);
while (tpassed < TIMEOUT && thpool_p->num_threads_alive) {
bsem_post_all(thpool_p->jobqueue.has_jobs);
time(&end);
tpassed = difftime(end, start);
}
/* Poll remaining threads */
while (thpool_p->num_threads_alive) {
bsem_post_all(thpool_p->jobqueue.has_jobs);
sleep(1);
}
/* Job queue cleanup */
jobqueue_destroy(&thpool_p->jobqueue);
/* Deallocs */
int n;
for (n = 0; n < threads_total; n++) {
thread_destroy(thpool_p->threads[n]);
}
free(thpool_p->threads);
free(thpool_p);
}
/* Pause all threads in threadpool */
void thpool_pause(thpool_ * thpool_p)
{
int n;
for (n = 0; n < thpool_p->num_threads_alive; n++) {
pthread_kill(thpool_p->threads[n]->pthread, SIGUSR1);
}
}
/* Resume all threads in threadpool */
void thpool_resume(thpool_ * thpool_p)
{
// resuming a single threadpool hasn't been
// implemented yet, meanwhile this supresses
// the warnings
(void)thpool_p;
threads_on_hold = 0;
}
int thpool_num_threads_working(thpool_ * thpool_p)
{
return thpool_p->num_threads_working;
}
/* ============================ THREAD ============================== */
/* Initialize a thread in the thread pool
*
* @param thread address to the pointer of the thread to be created
* @param id id to be given to the thread
* @return 0 on success, -1 otherwise.
*/
static int thread_init(thpool_ * thpool_p, struct thread **thread_p, int id)
{
*thread_p = (struct thread *)malloc(sizeof(struct thread));
if (*thread_p == NULL) {
err("thread_init(): Could not allocate memory for thread\n");
return -1;
}
(*thread_p)->thpool_p = thpool_p;
(*thread_p)->id = id;
pthread_create(&(*thread_p)->pthread, NULL, (void *(*)(void *))thread_do, (*thread_p));
pthread_detach((*thread_p)->pthread);
return 0;
}
/* Sets the calling thread on hold */
static void thread_hold(int sig_id)
{
(void)sig_id;
threads_on_hold = 1;
while (threads_on_hold) {
sleep(1);
}
}
/* What each thread is doing
*
* In principle this is an endless loop. The only time this loop gets interuppted is once
* thpool_destroy() is invoked or the program exits.
*
* @param thread thread that will run this function
* @return nothing
*/
static void *thread_do(struct thread *thread_p)
{
/* Set thread name for profiling and debuging */
char thread_name[32] = { 0 };
snprintf(thread_name, 32, "thread-pool-%d", thread_p->id);
#if defined(__linux__)
/* Use prctl instead to prevent using _GNU_SOURCE flag and implicit declaration */
prctl(PR_SET_NAME, thread_name);
#elif defined(__APPLE__) && defined(__MACH__)
pthread_setname_np(thread_name);
#else
err("thread_do(): pthread_setname_np is not supported on this system");
#endif
/* Assure all threads have been created before starting serving */
thpool_ *thpool_p = thread_p->thpool_p;
/* Register signal handler */
struct sigaction act;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
act.sa_handler = thread_hold;
if (sigaction(SIGUSR1, &act, NULL) == -1) {
err("thread_do(): cannot handle SIGUSR1");
}
/* Mark thread as alive (initialized) */
pthread_mutex_lock(&thpool_p->thcount_lock);
thpool_p->num_threads_alive += 1;
pthread_mutex_unlock(&thpool_p->thcount_lock);
while (threads_keepalive) {
bsem_wait(thpool_p->jobqueue.has_jobs);
if (threads_keepalive) {
pthread_mutex_lock(&thpool_p->thcount_lock);
thpool_p->num_threads_working++;
pthread_mutex_unlock(&thpool_p->thcount_lock);
/* Read job from queue and execute it */
void (*func_buff)(void *);
void *arg_buff;
job *job_p = jobqueue_pull(&thpool_p->jobqueue);
if (job_p) {
func_buff = job_p->function;
arg_buff = job_p->arg;
func_buff(arg_buff);
free(job_p);
}
pthread_mutex_lock(&thpool_p->thcount_lock);
thpool_p->num_threads_working--;
if (!thpool_p->num_threads_working) {
pthread_cond_signal(&thpool_p->threads_all_idle);
}
pthread_mutex_unlock(&thpool_p->thcount_lock);
}
}
pthread_mutex_lock(&thpool_p->thcount_lock);
thpool_p->num_threads_alive--;
pthread_mutex_unlock(&thpool_p->thcount_lock);
return NULL;
}
/* Frees a thread */
static void thread_destroy(thread * thread_p)
{
free(thread_p);
}
/* ============================ JOB QUEUE =========================== */
/* Initialize queue */
static int jobqueue_init(jobqueue * jobqueue_p)
{
jobqueue_p->len = 0;
jobqueue_p->front = NULL;
jobqueue_p->rear = NULL;
jobqueue_p->has_jobs = (struct bsem *)malloc(sizeof(struct bsem));
if (jobqueue_p->has_jobs == NULL) {
return -1;
}
pthread_mutex_init(&(jobqueue_p->rwmutex), NULL);
bsem_init(jobqueue_p->has_jobs, 0);
return 0;
}
/* Clear the queue */
static void jobqueue_clear(jobqueue * jobqueue_p)
{
while (jobqueue_p->len) {
free(jobqueue_pull(jobqueue_p));
}
jobqueue_p->front = NULL;
jobqueue_p->rear = NULL;
bsem_reset(jobqueue_p->has_jobs);
jobqueue_p->len = 0;
}
/* Add (allocated) job to queue
*/
static void jobqueue_push(jobqueue * jobqueue_p, struct job *newjob)
{
pthread_mutex_lock(&jobqueue_p->rwmutex);
newjob->prev = NULL;
switch (jobqueue_p->len) {
case 0: /* if no jobs in queue */
jobqueue_p->front = newjob;
jobqueue_p->rear = newjob;
break;
default: /* if jobs in queue */
jobqueue_p->rear->prev = newjob;
jobqueue_p->rear = newjob;
}
jobqueue_p->len++;
bsem_post(jobqueue_p->has_jobs);
pthread_mutex_unlock(&jobqueue_p->rwmutex);
}
/* Get first job from queue(removes it from queue)
* Notice: Caller MUST hold a mutex
*/
static struct job *jobqueue_pull(jobqueue * jobqueue_p)
{
pthread_mutex_lock(&jobqueue_p->rwmutex);
job *job_p = jobqueue_p->front;
switch (jobqueue_p->len) {
case 0: /* if no jobs in queue */
break;
case 1: /* if one job in queue */
jobqueue_p->front = NULL;
jobqueue_p->rear = NULL;
jobqueue_p->len = 0;
break;
default: /* if >1 jobs in queue */
jobqueue_p->front = job_p->prev;
jobqueue_p->len--;
/* more than one job in queue -> post it */
bsem_post(jobqueue_p->has_jobs);
}
pthread_mutex_unlock(&jobqueue_p->rwmutex);
return job_p;
}
/* Free all queue resources back to the system */
static void jobqueue_destroy(jobqueue * jobqueue_p)
{
jobqueue_clear(jobqueue_p);
free(jobqueue_p->has_jobs);
}
/* ======================== SYNCHRONISATION ========================= */
/* Init semaphore to 1 or 0 */
static void bsem_init(bsem * bsem_p, int value)
{
if (value < 0 || value > 1) {
err("bsem_init(): Binary semaphore can take only values 1 or 0");
exit(1);
}
pthread_mutex_init(&(bsem_p->mutex), NULL);
pthread_cond_init(&(bsem_p->cond), NULL);
bsem_p->v = value;
}
/* Reset semaphore to 0 */
static void bsem_reset(bsem * bsem_p)
{
bsem_init(bsem_p, 0);
}
/* Post to at least one thread */
static void bsem_post(bsem * bsem_p)
{
pthread_mutex_lock(&bsem_p->mutex);
bsem_p->v = 1;
pthread_cond_signal(&bsem_p->cond);
pthread_mutex_unlock(&bsem_p->mutex);
}
/* Post to all threads */
static void bsem_post_all(bsem * bsem_p)
{
pthread_mutex_lock(&bsem_p->mutex);
bsem_p->v = 1;
pthread_cond_broadcast(&bsem_p->cond);
pthread_mutex_unlock(&bsem_p->mutex);
}
/* Wait on semaphore until semaphore has value 0 */
static void bsem_wait(bsem * bsem_p)
{
pthread_mutex_lock(&bsem_p->mutex);
while (bsem_p->v != 1) {
pthread_cond_wait(&bsem_p->cond, &bsem_p->mutex);
}
bsem_p->v = 0;
pthread_mutex_unlock(&bsem_p->mutex);
}

177
thpool.h Normal file
View File

@ -0,0 +1,177 @@
/**********************************
* @author Johan Hanssen Seferidis
* License: MIT
*
**********************************/
#ifndef _THPOOL_
#define _THPOOL_
#ifdef __cplusplus
extern "C" {
#endif
/* =================================== API ======================================= */
typedef struct thpool_ *threadpool;
/**
* @brief Initialize threadpool
*
* Initializes a threadpool. This function will not return until all
* threads have initialized successfully.
*
* @example
*
* ..
* threadpool thpool; //First we declare a threadpool
* thpool = thpool_init(4); //then we initialize it to 4 threads
* ..
*
* @param num_threads number of threads to be created in the threadpool
* @return threadpool created threadpool on success,
* NULL on error
*/
threadpool thpool_init(int num_threads);
/**
* @brief Add work to the job queue
*
* Takes an action and its argument and adds it to the threadpool's job queue.
* If you want to add to work a function with more than one arguments then
* a way to implement this is by passing a pointer to a structure.
*
* NOTICE: You have to cast both the function and argument to not get warnings.
*
* @example
*
* void print_num(int num){
* printf("%d\n", num);
* }
*
* int main() {
* ..
* int a = 10;
* thpool_add_work(thpool, (void*)print_num, (void*)a);
* ..
* }
*
* @param threadpool threadpool to which the work will be added
* @param function_p pointer to function to add as work
* @param arg_p pointer to an argument
* @return 0 on success, -1 otherwise.
*/
int thpool_add_work(threadpool, void (*function_p)(void *), void *arg_p);
/**
* @brief Wait for all queued jobs to finish
*
* Will wait for all jobs - both queued and currently running to finish.
* Once the queue is empty and all work has completed, the calling thread
* (probably the main program) will continue.
*
* Smart polling is used in wait. The polling is initially 0 - meaning that
* there is virtually no polling at all. If after 1 seconds the threads
* haven't finished, the polling interval starts growing exponentially
* until it reaches max_secs seconds. Then it jumps down to a maximum polling
* interval assuming that heavy processing is being used in the threadpool.
*
* @example
*
* ..
* threadpool thpool = thpool_init(4);
* ..
* // Add a bunch of work
* ..
* thpool_wait(thpool);
* puts("All added work has finished");
* ..
*
* @param threadpool the threadpool to wait for
* @return nothing
*/
void thpool_wait(threadpool);
/**
* @brief Pauses all threads immediately
*
* The threads will be paused no matter if they are idle or working.
* The threads return to their previous states once thpool_resume
* is called.
*
* While the thread is being paused, new work can be added.
*
* @example
*
* threadpool thpool = thpool_init(4);
* thpool_pause(thpool);
* ..
* // Add a bunch of work
* ..
* thpool_resume(thpool); // Let the threads start their magic
*
* @param threadpool the threadpool where the threads should be paused
* @return nothing
*/
void thpool_pause(threadpool);
/**
* @brief Unpauses all threads if they are paused
*
* @example
* ..
* thpool_pause(thpool);
* sleep(10); // Delay execution 10 seconds
* thpool_resume(thpool);
* ..
*
* @param threadpool the threadpool where the threads should be unpaused
* @return nothing
*/
void thpool_resume(threadpool);
/**
* @brief Destroy the threadpool
*
* This will wait for the currently active threads to finish and then 'kill'
* the whole threadpool to free up memory.
*
* @example
* int main() {
* threadpool thpool1 = thpool_init(2);
* threadpool thpool2 = thpool_init(2);
* ..
* thpool_destroy(thpool1);
* ..
* return 0;
* }
*
* @param threadpool the threadpool to destroy
* @return nothing
*/
void thpool_destroy(threadpool);
/**
* @brief Show currently working threads
*
* Working threads are the threads that are performing work (not idle).
*
* @example
* int main() {
* threadpool thpool1 = thpool_init(2);
* threadpool thpool2 = thpool_init(2);
* ..
* printf("Working threads: %d\n", thpool_num_threads_working(thpool1));
* ..
* return 0;
* }
*
* @param threadpool the threadpool of interest
* @return integer number of threads working
*/
int thpool_num_threads_working(threadpool);
#ifdef __cplusplus
}
#endif
#endif

BIN
thpool.o Normal file

Binary file not shown.