优化433MHZ中继转发

This commit is contained in:
2023-04-18 19:42:00 +08:00
parent b73c05ab45
commit bd18dc786a
649 changed files with 62 additions and 63 deletions

16
433MHZ/rc-switch-pico/.gitignore vendored Normal file
View File

@@ -0,0 +1,16 @@
.DS_Store
CMakeFiles/
elf2uf2/
generated/
pico-sdk/
CMakeCache.txt
CMakeDoxyfile.in
CMakeDoxygenDefaults.cmake
Makefile
cmake_install.cmake
*.bin
*.dis
*.elf
*.elf.map
*.hex
*.uf2

View File

@@ -0,0 +1,23 @@
cmake_minimum_required(VERSION 3.12)
# Pull in SDK (must be before project)
include(pico_sdk_import.cmake)
project(pico_examples C CXX ASM)
set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 17)
set(PICO_EXAMPLES_PATH ${PROJECT_SOURCE_DIR})
# Initialize the SDK
pico_sdk_init()
# Add blink example
add_subdirectory(examples/Transmit)
add_subdirectory(examples/Receive)

View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2021 oshawa-connection
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,31 @@
add_executable(forward
Forward.cc
../../radio-switch.cc
)
add_compile_options(-Wall
-Wno-format # int != int32_t as far as the compiler is concerned because gcc has int32_t as long int
-Wno-unused-function # we have some for the docs that aren't called
-Wno-maybe-uninitialized
)
# Pull in our pico_stdlib which pulls in commonly used features
target_link_libraries(forward
pico_stdlib
hardware_adc
pico_multicore)
# enable usb output, disable uart output
pico_enable_stdio_usb(forward 1)
pico_enable_stdio_uart(forward 0)
# create map/bin/hex file etc.
pico_add_extra_outputs(forward)

View File

@@ -0,0 +1,219 @@
#include <iostream>
#include "pico/stdlib.h"
#include "../../radio-switch.h"
#include "pico/stdio.h"
#include "pico/multicore.h"
#include <map> // map
#include <time.h>
#define BUFFER_SIZ 270
const uint LED_PIN = PICO_DEFAULT_LED_PIN;
const uint RADIO_TRANSMIT_PIN = 16; // 433发射模块引脚
const uint RADIO_RECEIVER_PIN = 17; // 433接收模块引脚
const uint PASSWD_LEN = 3; // 随机数几位
const uint QUEUES_NUM = 3; // 队列数量, 满了发送
const uint QUEUES_WAIT = 60; // 队列等待时间, 单位秒, 队列未满时
char ins[] = "55";
char outs = '1';
// 闪烁LED
static void light()
{
gpio_init(LED_PIN);
gpio_set_dir(LED_PIN, GPIO_OUT);
gpio_put(LED_PIN, 1);
sleep_ms(100);
gpio_put(LED_PIN, 0);
sleep_ms(100);
return ;
}
static const char pool[] = {
'1', '2', '3', '4', '5', '6', '7', '8', '9'
};
// 随即数
static int RAND()
{
char password[BUFFER_SIZ];
int i = 0;
FILE *fp;
memset(password, 0, BUFFER_SIZ);
srand(time(NULL));
while (i != PASSWD_LEN) {
password[i++] = pool[rand() % sizeof(pool)];
}
//printf("%d\n", atoi(password));
return atoi(password);
}
static void SEND(const int ID)
{
int RANDOM = 500;
const int LOOP_NUM = 1; // 循环发送次数
const uint PULSE_LENGTH = 169; // set this to PULSELENGTH RECIEVED
const uint REPEAT_TRANSMIT = 5; // set this to whatever works best for you. // 重复发送
const uint PROTOCOL = 1; // set this to PROTOCOL RECIEVED
const uint BIT_LENGTH = 24; // set this to BIT LENGTH RECIEVED
gpio_init(RADIO_TRANSMIT_PIN);
RCSwitch mySwitch = RCSwitch();
mySwitch.enableTransmit(RADIO_TRANSMIT_PIN);
mySwitch.setProtocol(PROTOCOL);
mySwitch.setPulseLength(PULSE_LENGTH);
mySwitch.setRepeatTransmit(REPEAT_TRANSMIT);
for (int i = 0; i <= LOOP_NUM; i++) {
RANDOM = RAND();
light(); // 灯闪烁
sleep_ms(RANDOM * 2 / 3); // 等待随机时间
mySwitch.send(ID, BIT_LENGTH); // 发射
sleep_ms(100);
}
return ;
}
static int int_string(int val, char *inchars, int SIZE, int *inchars_len, char *outchars, int *outchars_len)
{
memset(inchars, 0, SIZE);
memset(outchars, 0, SIZE);
snprintf(inchars, SIZE, "%d", val);
*inchars_len = strlen(inchars);
if (0 == strncasecmp(inchars, ins, 2)) {
outchars[0] = outs;
outchars[1] = outs;
strncpy(outchars + 2, inchars + 2, (*inchars_len) - 2);
*outchars_len = strlen(outchars);
}
return 0;
}
// 核心0发送数据到核心1, 核心1判断是否有数据到来, 然后打印.
static void core1_main()
{
gpio_init(RADIO_RECEIVER_PIN);
RCSwitch rcSwitch = RCSwitch();
rcSwitch.enableReceive(RADIO_RECEIVER_PIN);
char inchars[BUFFER_SIZ];
char outchars[BUFFER_SIZ];
int inchars_len;
int outchars_len;
while (true)
{
if (rcSwitch.available())
{
light(); // 灯闪烁
uint32_t val = rcSwitch.getReceivedValue();
int_string(val, inchars, BUFFER_SIZ, &inchars_len, outchars, &outchars_len);
if (val != 0)
{
if (inchars[0] == ins[0] && inchars[1] == ins[1])
{
multicore_fifo_push_blocking(atoi(outchars));
}
else
{
rcSwitch.resetAvailable();
val = 0;
continue;
}
}
rcSwitch.resetAvailable();
val = 0;
}
sleep_ms(100);
}
return ;
}
int main(void)
{
stdio_init_all();
std::map < int, int >idcode;
int count=0;
uint32_t i=0;
multicore_reset_core1();
multicore_launch_core1(core1_main);
while (1)
{
if (multicore_fifo_rvalid())
{
i = multicore_fifo_pop_blocking(); // 读取核心1发送来的数据
idcode.insert( { // 插入map
i, i}
);
}
if (idcode.size() >= QUEUES_NUM) // 等于3个时发送
{
for (auto it: idcode)
{
printf("核心0转发433MHZ %u\n", it.first);
SEND(it.first);
}
idcode.clear();
}
else // 一直没有3个时候, 过一段时间发送
{
count++; // 计数
if (count == QUEUES_WAIT*10) // 秒
{
for (auto it: idcode)
{
printf("核心0转发433MHZ %u\n", it.first);
SEND(it.first);
}
idcode.clear();
count = 0;
}
}
sleep_ms(10);
}
return 0;
}

View File

@@ -0,0 +1,31 @@
add_executable(receive
Receive.cc
../../radio-switch.cc
)
add_compile_options(-Wall
-Wno-format # int != int32_t as far as the compiler is concerned because gcc has int32_t as long int
-Wno-unused-function # we have some for the docs that aren't called
-Wno-maybe-uninitialized
)
# Pull in our pico_stdlib which pulls in commonly used features
target_link_libraries(receive
pico_stdlib
hardware_adc
pico_multicore)
# enable usb output, disable uart output
pico_enable_stdio_usb(receive 1)
pico_enable_stdio_uart(receive 0)
# create map/bin/hex file etc.
pico_add_extra_outputs(receive)

View File

@@ -0,0 +1,156 @@
#include <iostream>
#include "pico/stdlib.h"
#include "../../radio-switch.h"
#include "pico/stdio.h"
#include "pico/multicore.h"
#include <map> // map
#include <time.h>
#define BUFFER_SIZ 1024
//const uint RADIO_TRANSMIT_PIN = 16; // 433发射模块引脚
const uint RADIO_RECEIVER_PIN = 17; // 433接收模块引脚
// 闪烁LED
void light()
{
const uint LED_PIN = PICO_DEFAULT_LED_PIN;
gpio_init(LED_PIN);
gpio_set_dir(LED_PIN, GPIO_OUT);
gpio_put(LED_PIN, 1);
sleep_ms(100);
gpio_put(LED_PIN, 0);
sleep_ms(100);
}
int int_string(int val, char *string, int string_len, int *str_len, char *dest, int *dest_len)
{
memset(string, 0, string_len);
memset(dest, 0, string_len);
char s[] = "55";
char d = '1';
snprintf(string, string_len, "%d", val);
*str_len = strlen(string);
if (0 == strncasecmp(string, s, 2)) {
dest[0] = d;
dest[1] = d;
strncpy(dest + 2, string + 2, (*str_len) - 2);
*dest_len = strlen(dest);
}
return 0;
}
// 核心0发送数据到核心1, 核心1判断是否有数据到来, 然后打印.
void core1_main()
{
gpio_init(RADIO_RECEIVER_PIN);
RCSwitch rcSwitch = RCSwitch();
rcSwitch.enableReceive(RADIO_RECEIVER_PIN);
const char s = '1';
uint32_t val = 0;
int str_len;
int dest_len;
char str[270];
char dest[270];
while (true)
{
if (rcSwitch.available())
{
light();
val = rcSwitch.getReceivedValue();
int_string(val, str, 270, &str_len, dest, &dest_len);
if (val != 0) {
if (str[0] == s && str[1] == s) {
multicore_fifo_push_blocking(atoi(dest));
} else {
rcSwitch.resetAvailable();
val = 0;
continue;
}
}
rcSwitch.resetAvailable();
val = 0;
}
sleep_ms(130);
}
return;
}
int main()
{
stdio_init_all();
std::map < int, int >idcode;
int count=0;
uint32_t i=0;
multicore_reset_core1();
multicore_launch_core1(core1_main);
while (1)
{
if (multicore_fifo_rvalid()) {
i = multicore_fifo_pop_blocking(); // 读取核心1发送来的数据
idcode.insert( { // 插入map
i, i}
);
}
if (idcode.size() >= 3) { // 等于3个时发送
for (auto it: idcode) {
printf("核心0接收433MHZ %u\n", it.first);
}
idcode.clear();
}
else // 一直没有3个时候, 过一段时间发送
{
count++; // 计数
if (count == 600) // 60秒
{
for (auto it: idcode) {
printf("核心0接收433MHZ %u\n", it.first);
}
idcode.clear();
count = 0;
}
}
sleep_ms(100);
}
return 0;
}

View File

@@ -0,0 +1,26 @@
add_executable(transmit
Transmit.cc
../../radio-switch.cc
)
add_compile_options(-Wall
-Wno-format # int != int32_t as far as the compiler is concerned because gcc has int32_t as long int
-Wno-unused-function # we have some for the docs that aren't called
-Wno-maybe-uninitialized
)
# Pull in our pico_stdlib which pulls in commonly used features
target_link_libraries(transmit pico_stdlib)
# enable usb output, disable uart output
pico_enable_stdio_usb(transmit 1)
pico_enable_stdio_uart(transmit 0)
pico_enable_stdio_uart(transmit ENABLED)
# create map/bin/hex file etc.
pico_add_extra_outputs(transmit)

View File

@@ -0,0 +1,94 @@
#include <iostream>
#include "pico/stdlib.h"
#include "../../radio-switch.h"
#include <time.h>
#define BUFFER_SIZ 1024
// 闪烁LED
static void light()
{
const uint LED_PIN = PICO_DEFAULT_LED_PIN;
gpio_init(LED_PIN);
gpio_set_dir(LED_PIN, GPIO_OUT);
gpio_put(LED_PIN, 1);
sleep_ms(100);
gpio_put(LED_PIN, 0);
sleep_ms(100);
}
static char pool[] = {
'1', '2', '3', '4', '5', '6', '7', '8', '9'
};
// 随即数
static int RAND()
{
int PASSWD_LEN = 3;
char password[BUFFER_SIZ];
int i = 0;
FILE *fp;
memset(password, 0, BUFFER_SIZ);
srand(time(NULL));
while (i != PASSWD_LEN) {
password[i++] = pool[rand() % sizeof(pool)];
}
//printf("%d\n", atoi(password));
return atoi(password);
}
int main(void)
{
const uint RADIO_TRANSMIT_PIN = 16; // 433发射模块引脚
const uint BUTTON = 17; // 按钮发射
const uint PULSE_LENGTH = 169; // set this to PULSELENGTH RECIEVED
const uint REPEAT_TRANSMIT = 4; // set this to whatever works best for you. // 重复发送
const uint PROTOCOL = 1; // set this to PROTOCOL RECIEVED
const uint BIT_LENGTH = 24; // set this to BIT LENGTH RECIEVED
stdio_init_all();
gpio_init(RADIO_TRANSMIT_PIN);
RCSwitch mySwitch = RCSwitch();
mySwitch.enableTransmit(RADIO_TRANSMIT_PIN);
mySwitch.setProtocol(PROTOCOL);
mySwitch.setPulseLength(PULSE_LENGTH);
mySwitch.setRepeatTransmit(REPEAT_TRANSMIT);
int RANDOM = 30;
int LOOP_NUM = 1; // 循环发送次数
const int but = 55001;
stdio_uart_init_full(uart0, 115200, 6, 7);
while (1) {
//fprintf(uart0_handle, "Hello from uart0!\r\n");
//if (1 == gpio_get(BUTTON)) { // 按钮按下
for (int i = 0; i <= LOOP_NUM; i++) {
RANDOM = RAND();
light(); // 灯闪烁
sleep_ms(RANDOM * 2 / 3); // 等待随机时间
mySwitch.send(but, BIT_LENGTH); // 第一次发射
sleep_ms(130);
//mySwitch.send(but+1, BIT_LENGTH); // 第二次发射
//sleep_ms(130);
}
//}
sleep_ms(3000);
}
return 0;
}

View File

@@ -0,0 +1,62 @@
# This is a copy of <PICO_SDK_PATH>/external/pico_sdk_import.cmake
# This can be dropped into an external project to help locate this SDK
# It should be include()ed prior to project()
if (DEFINED ENV{PICO_SDK_PATH} AND (NOT PICO_SDK_PATH))
set(PICO_SDK_PATH $ENV{PICO_SDK_PATH})
message("Using PICO_SDK_PATH from environment ('${PICO_SDK_PATH}')")
endif ()
if (DEFINED ENV{PICO_SDK_FETCH_FROM_GIT} AND (NOT PICO_SDK_FETCH_FROM_GIT))
set(PICO_SDK_FETCH_FROM_GIT $ENV{PICO_SDK_FETCH_FROM_GIT})
message("Using PICO_SDK_FETCH_FROM_GIT from environment ('${PICO_SDK_FETCH_FROM_GIT}')")
endif ()
if (DEFINED ENV{PICO_SDK_FETCH_FROM_GIT_PATH} AND (NOT PICO_SDK_FETCH_FROM_GIT_PATH))
set(PICO_SDK_FETCH_FROM_GIT_PATH $ENV{PICO_SDK_FETCH_FROM_GIT_PATH})
message("Using PICO_SDK_FETCH_FROM_GIT_PATH from environment ('${PICO_SDK_FETCH_FROM_GIT_PATH}')")
endif ()
set(PICO_SDK_PATH "${PICO_SDK_PATH}" CACHE PATH "Path to the Raspberry Pi Pico SDK")
set(PICO_SDK_FETCH_FROM_GIT "${PICO_SDK_FETCH_FROM_GIT}" CACHE BOOL "Set to ON to fetch copy of SDK from git if not otherwise locatable")
set(PICO_SDK_FETCH_FROM_GIT_PATH "${PICO_SDK_FETCH_FROM_GIT_PATH}" CACHE FILEPATH "location to download SDK")
if (NOT PICO_SDK_PATH)
if (PICO_SDK_FETCH_FROM_GIT)
include(FetchContent)
set(FETCHCONTENT_BASE_DIR_SAVE ${FETCHCONTENT_BASE_DIR})
if (PICO_SDK_FETCH_FROM_GIT_PATH)
get_filename_component(FETCHCONTENT_BASE_DIR "${PICO_SDK_FETCH_FROM_GIT_PATH}" REALPATH BASE_DIR "${CMAKE_SOURCE_DIR}")
endif ()
FetchContent_Declare(
pico_sdk
GIT_REPOSITORY https://github.com/raspberrypi/pico-sdk
GIT_TAG master
)
if (NOT pico_sdk)
message("Downloading Raspberry Pi Pico SDK")
FetchContent_Populate(pico_sdk)
set(PICO_SDK_PATH ${pico_sdk_SOURCE_DIR})
endif ()
set(FETCHCONTENT_BASE_DIR ${FETCHCONTENT_BASE_DIR_SAVE})
else ()
message(FATAL_ERROR
"SDK location was not specified. Please set PICO_SDK_PATH or set PICO_SDK_FETCH_FROM_GIT to on to fetch from git."
)
endif ()
endif ()
get_filename_component(PICO_SDK_PATH "${PICO_SDK_PATH}" REALPATH BASE_DIR "${CMAKE_BINARY_DIR}")
if (NOT EXISTS ${PICO_SDK_PATH})
message(FATAL_ERROR "Directory '${PICO_SDK_PATH}' not found")
endif ()
set(PICO_SDK_INIT_CMAKE_FILE ${PICO_SDK_PATH}/pico_sdk_init.cmake)
if (NOT EXISTS ${PICO_SDK_INIT_CMAKE_FILE})
message(FATAL_ERROR "Directory '${PICO_SDK_PATH}' does not appear to contain the Raspberry Pi Pico SDK")
endif ()
set(PICO_SDK_PATH ${PICO_SDK_PATH} CACHE PATH "Path to the Raspberry Pi Pico SDK" FORCE)
include(${PICO_SDK_INIT_CMAKE_FILE})

Binary file not shown.

View File

@@ -0,0 +1,728 @@
/*
RCSwitch - Arduino libary for remote control outlet switches
Copyright (c) 2011 Suat Özgür. All right reserved.
Contributors:
- Andre Koehler / info(at)tomate-online(dot)de
- Gordeev Andrey Vladimirovich / gordeev(at)openpyro(dot)com
- Skineffect / http://forum.ardumote.com/viewtopic.php?f=2&t=46
- Dominik Fischer / dom_fischer(at)web(dot)de
- Frank Oltmanns / <first name>.<last name>(at)gmail(dot)com
- Andreas Steinel / A.<lastname>(at)gmail(dot)com
- Max Horn / max(at)quendi(dot)de
- Robert ter Vehn / <first name>.<last name>(at)gmail(dot)com
- Johann Richard / <first name>.<last name>(at)gmail(dot)com
- Vlad Gheorghe / <first name>.<last name>(at)gmail(dot)com https://github.com/vgheo
- Matias Cuenca-Acuna
Project home: https://github.com/sui77/rc-switch/
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "radio-switch.h"
#include "pico/stdlib.h"
#include "hardware/gpio.h"
#include "hardware/uart.h"
#ifdef _PICO_STDLIB_H
#define HIGH 1
#define LOW 0
#endif
#define PROGMEM
#define memcpy_P(dest, src, num) memcpy((dest), (src), (num))
#if defined(ESP8266)
// interrupt handler and related code must be in RAM on ESP8266,
// according to issue #46.
#define RECEIVE_ATTR ICACHE_RAM_ATTR
#define VAR_ISR_ATTR
#elif defined(ESP32)
#define RECEIVE_ATTR IRAM_ATTR
#define VAR_ISR_ATTR DRAM_ATTR
#else
#define RECEIVE_ATTR
#define VAR_ISR_ATTR
#endif
/* Format for protocol definitions:
* {pulselength, Sync bit, "0" bit, "1" bit, invertedSignal}
*
* pulselength: pulse length in microseconds, e.g. 350
* Sync bit: {1, 31} means 1 high pulse and 31 low pulses
* (perceived as a 31*pulselength long pulse, total length of sync bit is
* 32*pulselength microseconds), i.e:
* _
* | |_______________________________ (don't count the vertical bars)
* "0" bit: waveform for a data bit of value "0", {1, 3} means 1 high pulse
* and 3 low pulses, total length (1+3)*pulselength, i.e:
* _
* | |___
* "1" bit: waveform for a data bit of value "1", e.g. {3,1}:
* ___
* | |_
*
* These are combined to form Tri-State bits when sending or receiving codes.
*/
#if defined(ESP8266) || defined(ESP32)
static const VAR_ISR_ATTR RCSwitch::Protocol proto[] = {
#else
static const RCSwitch::Protocol PROGMEM proto[] = {
#endif
{ 350, { 1, 31 }, { 1, 3 }, { 3, 1 }, false }, // protocol 1
{ 650, { 1, 10 }, { 1, 2 }, { 2, 1 }, false }, // protocol 2
{ 100, { 30, 71 }, { 4, 11 }, { 9, 6 }, false }, // protocol 3
{ 380, { 1, 6 }, { 1, 3 }, { 3, 1 }, false }, // protocol 4
{ 500, { 6, 14 }, { 1, 2 }, { 2, 1 }, false }, // protocol 5
{ 450, { 23, 1 }, { 1, 2 }, { 2, 1 }, true }, // protocol 6 (HT6P20B)
{ 150, { 2, 62 }, { 1, 6 }, { 6, 1 }, false }, // protocol 7 (HS2303-PT, i. e. used in AUKEY Remote)
{ 200, { 3, 130}, { 7, 16 }, { 3, 16}, false}, // protocol 8 Conrad RS-200 RX
{ 200, { 130, 7 }, { 16, 7 }, { 16, 3 }, true}, // protocol 9 Conrad RS-200 TX
{ 365, { 18, 1 }, { 3, 1 }, { 1, 3 }, true }, // protocol 10 (1ByOne Doorbell)
{ 270, { 36, 1 }, { 1, 2 }, { 2, 1 }, true }, // protocol 11 (HT12E)
{ 320, { 36, 1 }, { 1, 2 }, { 2, 1 }, true } // protocol 12 (SM5212)
};
void RCSwitch::gpio_callback(unsigned int gpio, uint32_t events) {
RCSwitch::handleInterrupt();
}
enum {
numProto = sizeof(proto) / sizeof(proto[0])
};
#if not defined( RCSwitchDisableReceiving )
volatile unsigned long RCSwitch::nReceivedValue = 0;
volatile unsigned int RCSwitch::nReceivedBitlength = 0;
volatile unsigned int RCSwitch::nReceivedDelay = 0;
volatile unsigned int RCSwitch::nReceivedProtocol = 0;
int RCSwitch::nReceiveTolerance = 60;
const unsigned int VAR_ISR_ATTR RCSwitch::nSeparationLimit = 4300;
// separationLimit: minimum microseconds between received codes, closer codes are ignored.
// according to discussion on issue #14 it might be more suitable to set the separation
// limit to the same time as the 'low' part of the sync signal for the current protocol.
unsigned int RCSwitch::timings[RCSWITCH_MAX_CHANGES];
#endif
RCSwitch::RCSwitch() {
this->nTransmitterPin = -1;
this->setRepeatTransmit(10);
this->setProtocol(1);
#if not defined( RCSwitchDisableReceiving )
this->nReceiverInterrupt = -1;
this->setReceiveTolerance(60);
RCSwitch::nReceivedValue = 0;
#endif
}
/**
* Sets the protocol to send.
*/
void RCSwitch::setProtocol(Protocol protocol) {
this->protocol = protocol;
}
/**
* Sets the protocol to send, from a list of predefined protocols
*/
void RCSwitch::setProtocol(int nProtocol) {
if (nProtocol < 1 || nProtocol > numProto) {
nProtocol = 1; // TODO: trigger an error, e.g. "bad protocol" ???
}
#if defined(ESP8266) || defined(ESP32)
this->protocol = proto[nProtocol-1];
#else
memcpy_P(&this->protocol, &proto[nProtocol-1], sizeof(Protocol));
#endif
}
/**
* Sets the protocol to send with pulse length in microseconds.
*/
void RCSwitch::setProtocol(int nProtocol, int nPulseLength) {
setProtocol(nProtocol);
this->setPulseLength(nPulseLength);
}
/**
* Sets pulse length in microseconds
*/
void RCSwitch::setPulseLength(int nPulseLength) {
this->protocol.pulseLength = nPulseLength;
}
/**
* Sets Repeat Transmits
*/
void RCSwitch::setRepeatTransmit(int nRepeatTransmit) {
this->nRepeatTransmit = nRepeatTransmit;
}
/**
* Set Receiving Tolerance
*/
#if not defined( RCSwitchDisableReceiving )
void RCSwitch::setReceiveTolerance(int nPercent) {
RCSwitch::nReceiveTolerance = nPercent;
}
#endif
/**
* Enable transmissions
*
* @param nTransmitterPin Arduino Pin to which the sender is connected to
*/
void RCSwitch::enableTransmit(int nTransmitterPin) {
this->nTransmitterPin = nTransmitterPin;
// pinMode(this->nTransmitterPin, OUTPUT);
gpio_set_dir(this->nTransmitterPin,GPIO_OUT);
}
/**
* Disable transmissions
*/
void RCSwitch::disableTransmit() {
this->nTransmitterPin = -1;
}
/**
* Switch a remote switch on (Type D REV)
*
* @param sGroup Code of the switch group (A,B,C,D)
* @param nDevice Number of the switch itself (1..3)
*/
void RCSwitch::switchOn(char sGroup, int nDevice) {
this->sendTriState( this->getCodeWordD(sGroup, nDevice, true) );
}
/**
* Switch a remote switch off (Type D REV)
*
* @param sGroup Code of the switch group (A,B,C,D)
* @param nDevice Number of the switch itself (1..3)
*/
void RCSwitch::switchOff(char sGroup, int nDevice) {
this->sendTriState( this->getCodeWordD(sGroup, nDevice, false) );
}
/**
* Switch a remote switch on (Type C Intertechno)
*
* @param sFamily Familycode (a..f)
* @param nGroup Number of group (1..4)
* @param nDevice Number of device (1..4)
*/
void RCSwitch::switchOn(char sFamily, int nGroup, int nDevice) {
this->sendTriState( this->getCodeWordC(sFamily, nGroup, nDevice, true) );
}
/**
* Switch a remote switch off (Type C Intertechno)
*
* @param sFamily Familycode (a..f)
* @param nGroup Number of group (1..4)
* @param nDevice Number of device (1..4)
*/
void RCSwitch::switchOff(char sFamily, int nGroup, int nDevice) {
this->sendTriState( this->getCodeWordC(sFamily, nGroup, nDevice, false) );
}
/**
* Switch a remote switch on (Type B with two rotary/sliding switches)
*
* @param nAddressCode Number of the switch group (1..4)
* @param nChannelCode Number of the switch itself (1..4)
*/
void RCSwitch::switchOn(int nAddressCode, int nChannelCode) {
this->sendTriState( this->getCodeWordB(nAddressCode, nChannelCode, true) );
}
/**
* Switch a remote switch off (Type B with two rotary/sliding switches)
*
* @param nAddressCode Number of the switch group (1..4)
* @param nChannelCode Number of the switch itself (1..4)
*/
void RCSwitch::switchOff(int nAddressCode, int nChannelCode) {
this->sendTriState( this->getCodeWordB(nAddressCode, nChannelCode, false) );
}
/**
* Deprecated, use switchOn(const char* sGroup, const char* sDevice) instead!
* Switch a remote switch on (Type A with 10 pole DIP switches)
*
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
* @param nChannelCode Number of the switch itself (1..5)
*/
void RCSwitch::switchOn(const char* sGroup, int nChannel) {
const char* code[6] = { "00000", "10000", "01000", "00100", "00010", "00001" };
this->switchOn(sGroup, code[nChannel]);
}
/**
* Deprecated, use switchOff(const char* sGroup, const char* sDevice) instead!
* Switch a remote switch off (Type A with 10 pole DIP switches)
*
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
* @param nChannelCode Number of the switch itself (1..5)
*/
void RCSwitch::switchOff(const char* sGroup, int nChannel) {
const char* code[6] = { "00000", "10000", "01000", "00100", "00010", "00001" };
this->switchOff(sGroup, code[nChannel]);
}
/**
* Switch a remote switch on (Type A with 10 pole DIP switches)
*
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
* @param sDevice Code of the switch device (refers to DIP switches 6..10 (A..E) where "1" = on and "0" = off, if all DIP switches are on it's "11111")
*/
void RCSwitch::switchOn(const char* sGroup, const char* sDevice) {
this->sendTriState( this->getCodeWordA(sGroup, sDevice, true) );
}
/**
* Switch a remote switch off (Type A with 10 pole DIP switches)
*
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
* @param sDevice Code of the switch device (refers to DIP switches 6..10 (A..E) where "1" = on and "0" = off, if all DIP switches are on it's "11111")
*/
void RCSwitch::switchOff(const char* sGroup, const char* sDevice) {
this->sendTriState( this->getCodeWordA(sGroup, sDevice, false) );
}
/**
* Returns a char[13], representing the code word to be send.
*
*/
char* RCSwitch::getCodeWordA(const char* sGroup, const char* sDevice, bool bStatus) {
static char sReturn[13];
int nReturnPos = 0;
for (int i = 0; i < 5; i++) {
sReturn[nReturnPos++] = (sGroup[i] == '0') ? 'F' : '0';
}
for (int i = 0; i < 5; i++) {
sReturn[nReturnPos++] = (sDevice[i] == '0') ? 'F' : '0';
}
sReturn[nReturnPos++] = bStatus ? '0' : 'F';
sReturn[nReturnPos++] = bStatus ? 'F' : '0';
sReturn[nReturnPos] = '\0';
return sReturn;
}
/**
* Encoding for type B switches with two rotary/sliding switches.
*
* The code word is a tristate word and with following bit pattern:
*
* +-----------------------------+-----------------------------+----------+------------+
* | 4 bits address | 4 bits address | 3 bits | 1 bit |
* | switch group | switch number | not used | on / off |
* | 1=0FFF 2=F0FF 3=FF0F 4=FFF0 | 1=0FFF 2=F0FF 3=FF0F 4=FFF0 | FFF | on=F off=0 |
* +-----------------------------+-----------------------------+----------+------------+
*
* @param nAddressCode Number of the switch group (1..4)
* @param nChannelCode Number of the switch itself (1..4)
* @param bStatus Whether to switch on (true) or off (false)
*
* @return char[13], representing a tristate code word of length 12
*/
char* RCSwitch::getCodeWordB(int nAddressCode, int nChannelCode, bool bStatus) {
static char sReturn[13];
int nReturnPos = 0;
if (nAddressCode < 1 || nAddressCode > 4 || nChannelCode < 1 || nChannelCode > 4) {
return 0;
}
for (int i = 1; i <= 4; i++) {
sReturn[nReturnPos++] = (nAddressCode == i) ? '0' : 'F';
}
for (int i = 1; i <= 4; i++) {
sReturn[nReturnPos++] = (nChannelCode == i) ? '0' : 'F';
}
sReturn[nReturnPos++] = 'F';
sReturn[nReturnPos++] = 'F';
sReturn[nReturnPos++] = 'F';
sReturn[nReturnPos++] = bStatus ? 'F' : '0';
sReturn[nReturnPos] = '\0';
return sReturn;
}
/**
* Like getCodeWord (Type C = Intertechno)
*/
char* RCSwitch::getCodeWordC(char sFamily, int nGroup, int nDevice, bool bStatus) {
static char sReturn[13];
int nReturnPos = 0;
int nFamily = (int)sFamily - 'a';
if ( nFamily < 0 || nFamily > 15 || nGroup < 1 || nGroup > 4 || nDevice < 1 || nDevice > 4) {
return 0;
}
// encode the family into four bits
sReturn[nReturnPos++] = (nFamily & 1) ? 'F' : '0';
sReturn[nReturnPos++] = (nFamily & 2) ? 'F' : '0';
sReturn[nReturnPos++] = (nFamily & 4) ? 'F' : '0';
sReturn[nReturnPos++] = (nFamily & 8) ? 'F' : '0';
// encode the device and group
sReturn[nReturnPos++] = ((nDevice-1) & 1) ? 'F' : '0';
sReturn[nReturnPos++] = ((nDevice-1) & 2) ? 'F' : '0';
sReturn[nReturnPos++] = ((nGroup-1) & 1) ? 'F' : '0';
sReturn[nReturnPos++] = ((nGroup-1) & 2) ? 'F' : '0';
// encode the status code
sReturn[nReturnPos++] = '0';
sReturn[nReturnPos++] = 'F';
sReturn[nReturnPos++] = 'F';
sReturn[nReturnPos++] = bStatus ? 'F' : '0';
sReturn[nReturnPos] = '\0';
return sReturn;
}
/**
* Encoding for the REV Switch Type
*
* The code word is a tristate word and with following bit pattern:
*
* +-----------------------------+-------------------+----------+--------------+
* | 4 bits address | 3 bits address | 3 bits | 2 bits |
* | switch group | device number | not used | on / off |
* | A=1FFF B=F1FF C=FF1F D=FFF1 | 1=0FF 2=F0F 3=FF0 | 000 | on=10 off=01 |
* +-----------------------------+-------------------+----------+--------------+
*
* Source: http://www.the-intruder.net/funksteckdosen-von-rev-uber-arduino-ansteuern/
*
* @param sGroup Name of the switch group (A..D, resp. a..d)
* @param nDevice Number of the switch itself (1..3)
* @param bStatus Whether to switch on (true) or off (false)
*
* @return char[13], representing a tristate code word of length 12
*/
char* RCSwitch::getCodeWordD(char sGroup, int nDevice, bool bStatus) {
static char sReturn[13];
int nReturnPos = 0;
// sGroup must be one of the letters in "abcdABCD"
int nGroup = (sGroup >= 'a') ? (int)sGroup - 'a' : (int)sGroup - 'A';
if ( nGroup < 0 || nGroup > 3 || nDevice < 1 || nDevice > 3) {
return 0;
}
for (int i = 0; i < 4; i++) {
sReturn[nReturnPos++] = (nGroup == i) ? '1' : 'F';
}
for (int i = 1; i <= 3; i++) {
sReturn[nReturnPos++] = (nDevice == i) ? '1' : 'F';
}
sReturn[nReturnPos++] = '0';
sReturn[nReturnPos++] = '0';
sReturn[nReturnPos++] = '0';
sReturn[nReturnPos++] = bStatus ? '1' : '0';
sReturn[nReturnPos++] = bStatus ? '0' : '1';
sReturn[nReturnPos] = '\0';
return sReturn;
}
/**
* @param sCodeWord a tristate code word consisting of the letter 0, 1, F
*/
void RCSwitch::sendTriState(const char* sCodeWord) {
// turn the tristate code word into the corresponding bit pattern, then send it
unsigned long code = 0;
unsigned int length = 0;
for (const char* p = sCodeWord; *p; p++) {
code <<= 2L;
switch (*p) {
case '0':
// bit pattern 00
break;
case 'F':
// bit pattern 01
code |= 1L;
break;
case '1':
// bit pattern 11
code |= 3L;
break;
}
length += 2;
}
this->send(code, length);
}
/**
* @param sCodeWord a binary code word consisting of the letter 0, 1
*/
void RCSwitch::send(const char* sCodeWord) {
// turn the tristate code word into the corresponding bit pattern, then send it
unsigned long code = 0;
unsigned int length = 0;
for (const char* p = sCodeWord; *p; p++) {
code <<= 1L;
if (*p != '0')
code |= 1L;
length++;
}
this->send(code, length);
}
/**
* Transmit the first 'length' bits of the integer 'code'. The
* bits are sent from MSB to LSB, i.e., first the bit at position length-1,
* then the bit at position length-2, and so on, till finally the bit at position 0.
*/
void RCSwitch::send(unsigned long code, unsigned int length) {
if (this->nTransmitterPin == -1)
return;
#if not defined( RCSwitchDisableReceiving )
// make sure the receiver is disabled while we transmit
int nReceiverInterrupt_backup = nReceiverInterrupt;
if (nReceiverInterrupt_backup != -1) {
this->disableReceive();
}
#endif
for (int nRepeat = 0; nRepeat < nRepeatTransmit; nRepeat++) {
for (int i = length-1; i >= 0; i--) {
if (code & (1L << i))
this->transmit(protocol.one);
else
this->transmit(protocol.zero);
}
this->transmit(protocol.syncFactor);
}
// Disable transmit after sending (i.e., for inverted protocols)
// digitalWrite(this->nTransmitterPin, LOW);
gpio_put(this->nTransmitterPin, LOW);
#if not defined( RCSwitchDisableReceiving )
// enable receiver again if we just disabled it
if (nReceiverInterrupt_backup != -1) {
this->enableReceive(nReceiverInterrupt_backup);
}
#endif
}
/**
* Transmit a single high-low pulse.
*/
void RCSwitch::transmit(HighLow pulses) {
uint8_t firstLogicLevel = (this->protocol.invertedSignal) ? LOW : HIGH;
uint8_t secondLogicLevel = (this->protocol.invertedSignal) ? HIGH : LOW;
// digitalWrite(this->nTransmitterPin, firstLogicLevel);
// delayMicroseconds( this->protocol.pulseLength * pulses.high);
// digitalWrite(this->nTransmitterPin, secondLogicLevel);
// delayMicroseconds( this->protocol.pulseLength * pulses.low);
gpio_put(this->nTransmitterPin, firstLogicLevel);
sleep_us(this->protocol.pulseLength * pulses.high);
gpio_put(this->nTransmitterPin, secondLogicLevel);
sleep_us(this->protocol.pulseLength * pulses.low);
}
#if not defined( RCSwitchDisableReceiving )
/**
* Enable receiving data
*/
void RCSwitch::enableReceive(int interrupt) {
this->nReceiverInterrupt = interrupt;
this->enableReceive();
}
void RCSwitch::enableReceive() {
if (this->nReceiverInterrupt != -1) {
RCSwitch::nReceivedValue = 0;
RCSwitch::nReceivedBitlength = 0;
gpio_set_irq_enabled_with_callback(this->nReceiverInterrupt, GPIO_IRQ_EDGE_RISE | GPIO_IRQ_EDGE_FALL, true, &gpio_callback);
// attachInterrupt(this->nReceiverInterrupt, handleInterrupt, CHANGE);
}
}
/**
* Disable receiving data
*/
void RCSwitch::disableReceive() {
#if not defined(RaspberryPi) // Arduino
// detachInterrupt(this->nReceiverInterrupt);
#endif // For Raspberry Pi (wiringPi) you can't unregister the ISR
this->nReceiverInterrupt = -1;
}
bool RCSwitch::available() {
return RCSwitch::nReceivedValue != 0;
}
void RCSwitch::resetAvailable() {
RCSwitch::nReceivedValue = 0;
}
unsigned long RCSwitch::getReceivedValue() {
return RCSwitch::nReceivedValue;
}
unsigned int RCSwitch::getReceivedBitlength() {
return RCSwitch::nReceivedBitlength;
}
unsigned int RCSwitch::getReceivedDelay() {
return RCSwitch::nReceivedDelay;
}
unsigned int RCSwitch::getReceivedProtocol() {
return RCSwitch::nReceivedProtocol;
}
unsigned int* RCSwitch::getReceivedRawdata() {
return RCSwitch::timings;
}
/* helper function for the receiveProtocol method */
static inline unsigned int diff(int A, int B) {
return abs(A - B);
}
/**
*
*/
bool RECEIVE_ATTR RCSwitch::receiveProtocol(const int p, unsigned int changeCount) {
#if defined(ESP8266) || defined(ESP32)
const Protocol &pro = proto[p-1];
#else
Protocol pro;
memcpy_P(&pro, &proto[p-1], sizeof(Protocol));
#endif
unsigned long code = 0;
//Assuming the longer pulse length is the pulse captured in timings[0]
const unsigned int syncLengthInPulses = ((pro.syncFactor.low) > (pro.syncFactor.high)) ? (pro.syncFactor.low) : (pro.syncFactor.high);
const unsigned int delay = RCSwitch::timings[0] / syncLengthInPulses;
const unsigned int delayTolerance = delay * RCSwitch::nReceiveTolerance / 100;
/* For protocols that start low, the sync period looks like
* _________
* _____________| |XXXXXXXXXXXX|
*
* |--1st dur--|-2nd dur-|-Start data-|
*
* The 3rd saved duration starts the data.
*
* For protocols that start high, the sync period looks like
*
* ______________
* | |____________|XXXXXXXXXXXXX|
*
* |-filtered out-|--1st dur--|--Start data--|
*
* The 2nd saved duration starts the data
*/
const unsigned int firstDataTiming = (pro.invertedSignal) ? (2) : (1);
for (unsigned int i = firstDataTiming; i < changeCount - 1; i += 2) {
code <<= 1;
if (diff(RCSwitch::timings[i], delay * pro.zero.high) < delayTolerance &&
diff(RCSwitch::timings[i + 1], delay * pro.zero.low) < delayTolerance) {
// zero
} else if (diff(RCSwitch::timings[i], delay * pro.one.high) < delayTolerance &&
diff(RCSwitch::timings[i + 1], delay * pro.one.low) < delayTolerance) {
// one
code |= 1;
} else {
// Failed
return false;
}
}
if (changeCount > 7) { // ignore very short transmissions: no device sends them, so this must be noise
RCSwitch::nReceivedValue = code;
RCSwitch::nReceivedBitlength = (changeCount - 1) / 2;
RCSwitch::nReceivedDelay = delay;
RCSwitch::nReceivedProtocol = p;
return true;
}
return false;
}
void RECEIVE_ATTR RCSwitch::handleInterrupt() {
static unsigned int changeCount = 0;
static unsigned long lastTime = 0;
static unsigned int repeatCount = 0;
// const long time = micros();
const long time = to_us_since_boot(get_absolute_time());
const unsigned int duration = time - lastTime;
if (duration > RCSwitch::nSeparationLimit) {
// A long stretch without signal level change occurred. This could
// be the gap between two transmission.
if ((repeatCount==0) || (diff(duration, RCSwitch::timings[0]) < 200)) {
// This long signal is close in length to the long signal which
// started the previously recorded timings; this suggests that
// it may indeed by a a gap between two transmissions (we assume
// here that a sender will send the signal multiple times,
// with roughly the same gap between them).
repeatCount++;
if (repeatCount == 2) {
for(unsigned int i = 1; i <= numProto; i++) {
if (receiveProtocol(i, changeCount)) {
// receive succeeded for protocol i
break;
}
}
repeatCount = 0;
}
}
changeCount = 0;
}
// detect overflow
if (changeCount >= RCSWITCH_MAX_CHANGES) {
changeCount = 0;
repeatCount = 0;
}
RCSwitch::timings[changeCount++] = duration;
lastTime = time;
}
#endif

View File

@@ -0,0 +1,170 @@
/*
RCSwitch - Arduino libary for remote control outlet switches
Copyright (c) 2011 Suat Özgür. All right reserved.
Contributors:
- Andre Koehler / info(at)tomate-online(dot)de
- Gordeev Andrey Vladimirovich / gordeev(at)openpyro(dot)com
- Skineffect / http://forum.ardumote.com/viewtopic.php?f=2&t=46
- Dominik Fischer / dom_fischer(at)web(dot)de
- Frank Oltmanns / <first name>.<last name>(at)gmail(dot)com
- Max Horn / max(at)quendi(dot)de
- Robert ter Vehn / <first name>.<last name>(at)gmail(dot)com
Project home: https://github.com/sui77/rc-switch/
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _RCSwitch_h
#define _RCSwitch_h
// #define RaspberryPi
// Include libraries for RPi:
#include <string.h> /* memcpy */
#include <stdlib.h> /* abs */
#include <stdint.h>
// Number of maximum high/Low changes per packet.
// We can handle up to (unsigned long) => 32 bit * 2 H/L changes per bit + 2 for sync
#define RCSWITCH_MAX_CHANGES 67
class RCSwitch {
public:
RCSwitch();
void switchOn(int nGroupNumber, int nSwitchNumber);
void switchOff(int nGroupNumber, int nSwitchNumber);
void switchOn(const char* sGroup, int nSwitchNumber);
void switchOff(const char* sGroup, int nSwitchNumber);
void switchOn(char sFamily, int nGroup, int nDevice);
void switchOff(char sFamily, int nGroup, int nDevice);
void switchOn(const char* sGroup, const char* sDevice);
void switchOff(const char* sGroup, const char* sDevice);
void switchOn(char sGroup, int nDevice);
void switchOff(char sGroup, int nDevice);
void sendTriState(const char* sCodeWord);
void send(unsigned long code, unsigned int length);
void send(const char* sCodeWord);
#if not defined( RCSwitchDisableReceiving )
void enableReceive(int interrupt);
void enableReceive();
void disableReceive();
bool available();
void resetAvailable();
unsigned long getReceivedValue();
unsigned int getReceivedBitlength();
unsigned int getReceivedDelay();
unsigned int getReceivedProtocol();
unsigned int* getReceivedRawdata();
#endif
void enableTransmit(int nTransmitterPin);
void disableTransmit();
void setPulseLength(int nPulseLength);
void setRepeatTransmit(int nRepeatTransmit);
#if not defined( RCSwitchDisableReceiving )
void setReceiveTolerance(int nPercent);
#endif
/**
* Description of a single pule, which consists of a high signal
* whose duration is "high" times the base pulse length, followed
* by a low signal lasting "low" times the base pulse length.
* Thus, the pulse overall lasts (high+low)*pulseLength
*/
struct HighLow {
uint8_t high;
uint8_t low;
};
/**
* A "protocol" describes how zero and one bits are encoded into high/low
* pulses.
*/
struct Protocol {
/** base pulse length in microseconds, e.g. 350 */
uint16_t pulseLength;
HighLow syncFactor;
HighLow zero;
HighLow one;
/**
* If true, interchange high and low logic levels in all transmissions.
*
* By default, RCSwitch assumes that any signals it sends or receives
* can be broken down into pulses which start with a high signal level,
* followed by a a low signal level. This is e.g. the case for the
* popular PT 2260 encoder chip, and thus many switches out there.
*
* But some devices do it the other way around, and start with a low
* signal level, followed by a high signal level, e.g. the HT6P20B. To
* accommodate this, one can set invertedSignal to true, which causes
* RCSwitch to change how it interprets any HighLow struct FOO: It will
* then assume transmissions start with a low signal lasting
* FOO.high*pulseLength microseconds, followed by a high signal lasting
* FOO.low*pulseLength microseconds.
*/
bool invertedSignal;
};
void setProtocol(Protocol protocol);
void setProtocol(int nProtocol);
void setProtocol(int nProtocol, int nPulseLength);
private:
static void gpio_callback(unsigned int gpio, uint32_t events);
char* getCodeWordA(const char* sGroup, const char* sDevice, bool bStatus);
char* getCodeWordB(int nGroupNumber, int nSwitchNumber, bool bStatus);
char* getCodeWordC(char sFamily, int nGroup, int nDevice, bool bStatus);
char* getCodeWordD(char group, int nDevice, bool bStatus);
void transmit(HighLow pulses);
#if not defined( RCSwitchDisableReceiving )
static void handleInterrupt();
static bool receiveProtocol(const int p, unsigned int changeCount);
int nReceiverInterrupt;
#endif
int nTransmitterPin;
int nRepeatTransmit;
Protocol protocol;
#if not defined( RCSwitchDisableReceiving )
static int nReceiveTolerance;
volatile static unsigned long nReceivedValue;
volatile static unsigned int nReceivedBitlength;
volatile static unsigned int nReceivedDelay;
volatile static unsigned int nReceivedProtocol;
const static unsigned int nSeparationLimit;
/*
* timings[0] contains sync timing, followed by a number of bits
*/
static unsigned int timings[RCSWITCH_MAX_CHANGES];
#endif
};
#endif

View File

@@ -0,0 +1,23 @@
# RcSwitch
A port of the brilliant [RC-Switch](https://github.com/sui77/rc-switch) library to the raspberry pi pico.
It allows you to send and recieve radio signals from 433/315Mhz devices like radio controlled power sockets, using cheap radio modules.
This works for both recieving and transmitting. Check out the examples for code for both of these.
## Building
This library can be developed on any platform that the pico-sdk works on, through cmake.
In the root directory, make sure that the pico-sdk is on your path and run
```bash
cmake .
```
then change directory into `examples/recieve`, then run
```bash
make
```
which will spit out your uf2 file.
## Issues
If you experience an error while using this library, please raise an issue here on Github and I'll try to help out. Pull requests are also very welcome!