2020-09-02 16:47:03 +08:00
|
|
|
/* Generate random permutations.
|
|
|
|
|
2022-07-28 14:16:50 +08:00
|
|
|
Copyright (C) 2006-2022 Free Software Foundation, Inc.
|
2020-09-02 16:47:03 +08:00
|
|
|
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>. */
|
|
|
|
|
|
|
|
/* Written by Paul Eggert. */
|
|
|
|
|
|
|
|
#include <config.h>
|
|
|
|
|
|
|
|
#include "randperm.h"
|
|
|
|
|
|
|
|
#include <limits.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
2022-07-28 14:16:50 +08:00
|
|
|
#include "attribute.h"
|
2020-09-02 16:47:03 +08:00
|
|
|
#include "count-leading-zeros.h"
|
|
|
|
#include "hash.h"
|
|
|
|
#include "verify.h"
|
|
|
|
#include "xalloc.h"
|
|
|
|
|
|
|
|
/* Return the floor of the log base 2 of N. If N is zero, return -1. */
|
|
|
|
|
2022-07-28 14:16:50 +08:00
|
|
|
ATTRIBUTE_CONST static int
|
2020-09-02 16:47:03 +08:00
|
|
|
floor_lg (size_t n)
|
|
|
|
{
|
|
|
|
verify (SIZE_WIDTH <= ULLONG_WIDTH);
|
|
|
|
return (n == 0 ? -1
|
|
|
|
: SIZE_WIDTH <= UINT_WIDTH
|
|
|
|
? UINT_WIDTH - 1 - count_leading_zeros (n)
|
|
|
|
: SIZE_WIDTH <= ULONG_WIDTH
|
|
|
|
? ULONG_WIDTH - 1 - count_leading_zeros_l (n)
|
|
|
|
: ULLONG_WIDTH - 1 - count_leading_zeros_ll (n));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return an upper bound on the number of random bytes needed to
|
|
|
|
generate the first H elements of a random permutation of N
|
|
|
|
elements. H must not exceed N. */
|
|
|
|
|
|
|
|
size_t
|
|
|
|
randperm_bound (size_t h, size_t n)
|
|
|
|
{
|
|
|
|
/* Upper bound on number of bits needed to generate the first number
|
|
|
|
of the permutation. */
|
|
|
|
uintmax_t lg_n = floor_lg (n) + 1;
|
|
|
|
|
|
|
|
/* Upper bound on number of bits needed to generated the first H elements. */
|
|
|
|
uintmax_t ar = lg_n * h;
|
|
|
|
|
|
|
|
/* Convert the bit count to a byte count. */
|
|
|
|
size_t bound = (ar + CHAR_BIT - 1) / CHAR_BIT;
|
|
|
|
|
|
|
|
return bound;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Swap elements I and J in array V. */
|
|
|
|
|
|
|
|
static void
|
|
|
|
swap (size_t *v, size_t i, size_t j)
|
|
|
|
{
|
|
|
|
size_t t = v[i];
|
|
|
|
v[i] = v[j];
|
|
|
|
v[j] = t;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Structures and functions for a sparse_map abstract data type that's
|
|
|
|
used to effectively swap elements I and J in array V like swap(),
|
|
|
|
but in a more memory efficient manner (when the number of permutations
|
|
|
|
performed is significantly less than the size of the input). */
|
|
|
|
|
|
|
|
struct sparse_ent_
|
|
|
|
{
|
|
|
|
size_t index;
|
|
|
|
size_t val;
|
|
|
|
};
|
|
|
|
|
|
|
|
static size_t
|
|
|
|
sparse_hash_ (void const *x, size_t table_size)
|
|
|
|
{
|
|
|
|
struct sparse_ent_ const *ent = x;
|
|
|
|
return ent->index % table_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool
|
|
|
|
sparse_cmp_ (void const *x, void const *y)
|
|
|
|
{
|
|
|
|
struct sparse_ent_ const *ent1 = x;
|
|
|
|
struct sparse_ent_ const *ent2 = y;
|
|
|
|
return ent1->index == ent2->index;
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef Hash_table sparse_map;
|
|
|
|
|
|
|
|
/* Initialize the structure for the sparse map,
|
|
|
|
when a best guess as to the number of entries
|
|
|
|
specified with SIZE_HINT. */
|
|
|
|
|
|
|
|
static sparse_map *
|
|
|
|
sparse_new (size_t size_hint)
|
|
|
|
{
|
|
|
|
return hash_initialize (size_hint, NULL, sparse_hash_, sparse_cmp_, free);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Swap the values for I and J. If a value is not already present
|
|
|
|
then assume it's equal to the index. Update the value for
|
|
|
|
index I in array V. */
|
|
|
|
|
|
|
|
static void
|
2022-07-28 14:16:50 +08:00
|
|
|
sparse_swap (sparse_map *sv, size_t *v, size_t i, size_t j)
|
2020-09-02 16:47:03 +08:00
|
|
|
{
|
2022-07-28 14:16:50 +08:00
|
|
|
struct sparse_ent_ *v1 = hash_remove (sv, &(struct sparse_ent_) {i,0});
|
|
|
|
struct sparse_ent_ *v2 = hash_remove (sv, &(struct sparse_ent_) {j,0});
|
2020-09-02 16:47:03 +08:00
|
|
|
|
|
|
|
/* FIXME: reduce the frequency of these mallocs. */
|
|
|
|
if (!v1)
|
|
|
|
{
|
|
|
|
v1 = xmalloc (sizeof *v1);
|
|
|
|
v1->index = v1->val = i;
|
|
|
|
}
|
|
|
|
if (!v2)
|
|
|
|
{
|
|
|
|
v2 = xmalloc (sizeof *v2);
|
|
|
|
v2->index = v2->val = j;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t t = v1->val;
|
|
|
|
v1->val = v2->val;
|
|
|
|
v2->val = t;
|
|
|
|
if (!hash_insert (sv, v1))
|
|
|
|
xalloc_die ();
|
|
|
|
if (!hash_insert (sv, v2))
|
|
|
|
xalloc_die ();
|
|
|
|
|
|
|
|
v[i] = v1->val;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
sparse_free (sparse_map *sv)
|
|
|
|
{
|
|
|
|
hash_free (sv);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* From R, allocate and return a malloc'd array of the first H elements
|
|
|
|
of a random permutation of N elements. H must not exceed N.
|
|
|
|
Return NULL if H is zero. */
|
|
|
|
|
|
|
|
size_t *
|
|
|
|
randperm_new (struct randint_source *r, size_t h, size_t n)
|
|
|
|
{
|
|
|
|
size_t *v;
|
|
|
|
|
|
|
|
switch (h)
|
|
|
|
{
|
|
|
|
case 0:
|
|
|
|
v = NULL;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 1:
|
|
|
|
v = xmalloc (sizeof *v);
|
|
|
|
v[0] = randint_choose (r, n);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
/* The algorithm is essentially the same in both
|
|
|
|
the sparse and non sparse case. In the sparse case we use
|
|
|
|
a hash to implement sparse storage for the set of n numbers
|
|
|
|
we're shuffling. When to use the sparse method was
|
|
|
|
determined with the help of this script:
|
|
|
|
|
|
|
|
#!/bin/sh
|
|
|
|
for n in $(seq 2 32); do
|
|
|
|
for h in $(seq 2 32); do
|
|
|
|
test $h -gt $n && continue
|
|
|
|
for s in o n; do
|
|
|
|
test $s = o && shuf=shuf || shuf=./shuf
|
|
|
|
num=$(env time -f "$s:${h},${n} = %e,%M" \
|
|
|
|
$shuf -i0-$((2**$n-2)) -n$((2**$h-2)) | wc -l)
|
|
|
|
test $num = $((2**$h-2)) || echo "$s:${h},${n} = failed" >&2
|
|
|
|
done
|
|
|
|
done
|
|
|
|
done
|
|
|
|
|
|
|
|
This showed that if sparseness = n/h, then:
|
|
|
|
|
|
|
|
sparseness = 128 => .125 mem used, and about same speed
|
|
|
|
sparseness = 64 => .25 mem used, but 1.5 times slower
|
|
|
|
sparseness = 32 => .5 mem used, but 2 times slower
|
|
|
|
|
|
|
|
Also the memory usage was only significant when n > 128Ki
|
|
|
|
*/
|
|
|
|
bool sparse = (n >= (128 * 1024)) && (n / h >= 32);
|
|
|
|
|
|
|
|
size_t i;
|
|
|
|
sparse_map *sv;
|
|
|
|
|
|
|
|
if (sparse)
|
|
|
|
{
|
|
|
|
sv = sparse_new (h * 2);
|
|
|
|
if (sv == NULL)
|
|
|
|
xalloc_die ();
|
|
|
|
v = xnmalloc (h, sizeof *v);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
sv = NULL; /* To placate GCC's -Wuninitialized. */
|
|
|
|
v = xnmalloc (n, sizeof *v);
|
|
|
|
for (i = 0; i < n; i++)
|
|
|
|
v[i] = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < h; i++)
|
|
|
|
{
|
|
|
|
size_t j = i + randint_choose (r, n - i);
|
|
|
|
if (sparse)
|
|
|
|
sparse_swap (sv, v, i, j);
|
|
|
|
else
|
|
|
|
swap (v, i, j);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (sparse)
|
|
|
|
sparse_free (sv);
|
|
|
|
else
|
|
|
|
v = xnrealloc (v, h, sizeof *v);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return v;
|
|
|
|
}
|