/* Generate random permutations. Copyright (C) 2006-2020 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Written by Paul Eggert. */ #include #include "randperm.h" #include #include #include #include "count-leading-zeros.h" #include "hash.h" #include "verify.h" #include "xalloc.h" /* Return the floor of the log base 2 of N. If N is zero, return -1. */ static int _GL_ATTRIBUTE_CONST floor_lg (size_t n) { verify (SIZE_WIDTH <= ULLONG_WIDTH); return (n == 0 ? -1 : SIZE_WIDTH <= UINT_WIDTH ? UINT_WIDTH - 1 - count_leading_zeros (n) : SIZE_WIDTH <= ULONG_WIDTH ? ULONG_WIDTH - 1 - count_leading_zeros_l (n) : ULLONG_WIDTH - 1 - count_leading_zeros_ll (n)); } /* Return an upper bound on the number of random bytes needed to generate the first H elements of a random permutation of N elements. H must not exceed N. */ size_t randperm_bound (size_t h, size_t n) { /* Upper bound on number of bits needed to generate the first number of the permutation. */ uintmax_t lg_n = floor_lg (n) + 1; /* Upper bound on number of bits needed to generated the first H elements. */ uintmax_t ar = lg_n * h; /* Convert the bit count to a byte count. */ size_t bound = (ar + CHAR_BIT - 1) / CHAR_BIT; return bound; } /* Swap elements I and J in array V. */ static void swap (size_t *v, size_t i, size_t j) { size_t t = v[i]; v[i] = v[j]; v[j] = t; } /* Structures and functions for a sparse_map abstract data type that's used to effectively swap elements I and J in array V like swap(), but in a more memory efficient manner (when the number of permutations performed is significantly less than the size of the input). */ struct sparse_ent_ { size_t index; size_t val; }; static size_t sparse_hash_ (void const *x, size_t table_size) { struct sparse_ent_ const *ent = x; return ent->index % table_size; } static bool sparse_cmp_ (void const *x, void const *y) { struct sparse_ent_ const *ent1 = x; struct sparse_ent_ const *ent2 = y; return ent1->index == ent2->index; } typedef Hash_table sparse_map; /* Initialize the structure for the sparse map, when a best guess as to the number of entries specified with SIZE_HINT. */ static sparse_map * sparse_new (size_t size_hint) { return hash_initialize (size_hint, NULL, sparse_hash_, sparse_cmp_, free); } /* Swap the values for I and J. If a value is not already present then assume it's equal to the index. Update the value for index I in array V. */ static void sparse_swap (sparse_map *sv, size_t* v, size_t i, size_t j) { struct sparse_ent_ *v1 = hash_delete (sv, &(struct sparse_ent_) {i,0}); struct sparse_ent_ *v2 = hash_delete (sv, &(struct sparse_ent_) {j,0}); /* FIXME: reduce the frequency of these mallocs. */ if (!v1) { v1 = xmalloc (sizeof *v1); v1->index = v1->val = i; } if (!v2) { v2 = xmalloc (sizeof *v2); v2->index = v2->val = j; } size_t t = v1->val; v1->val = v2->val; v2->val = t; if (!hash_insert (sv, v1)) xalloc_die (); if (!hash_insert (sv, v2)) xalloc_die (); v[i] = v1->val; } static void sparse_free (sparse_map *sv) { hash_free (sv); } /* From R, allocate and return a malloc'd array of the first H elements of a random permutation of N elements. H must not exceed N. Return NULL if H is zero. */ size_t * randperm_new (struct randint_source *r, size_t h, size_t n) { size_t *v; switch (h) { case 0: v = NULL; break; case 1: v = xmalloc (sizeof *v); v[0] = randint_choose (r, n); break; default: { /* The algorithm is essentially the same in both the sparse and non sparse case. In the sparse case we use a hash to implement sparse storage for the set of n numbers we're shuffling. When to use the sparse method was determined with the help of this script: #!/bin/sh for n in $(seq 2 32); do for h in $(seq 2 32); do test $h -gt $n && continue for s in o n; do test $s = o && shuf=shuf || shuf=./shuf num=$(env time -f "$s:${h},${n} = %e,%M" \ $shuf -i0-$((2**$n-2)) -n$((2**$h-2)) | wc -l) test $num = $((2**$h-2)) || echo "$s:${h},${n} = failed" >&2 done done done This showed that if sparseness = n/h, then: sparseness = 128 => .125 mem used, and about same speed sparseness = 64 => .25 mem used, but 1.5 times slower sparseness = 32 => .5 mem used, but 2 times slower Also the memory usage was only significant when n > 128Ki */ bool sparse = (n >= (128 * 1024)) && (n / h >= 32); size_t i; sparse_map *sv; if (sparse) { sv = sparse_new (h * 2); if (sv == NULL) xalloc_die (); v = xnmalloc (h, sizeof *v); } else { sv = NULL; /* To placate GCC's -Wuninitialized. */ v = xnmalloc (n, sizeof *v); for (i = 0; i < n; i++) v[i] = i; } for (i = 0; i < h; i++) { size_t j = i + randint_choose (r, n - i); if (sparse) sparse_swap (sv, v, i, j); else swap (v, i, j); } if (sparse) sparse_free (sv); else v = xnrealloc (v, h, sizeof *v); } break; } return v; }