386 lines
14 KiB
C
386 lines
14 KiB
C
/* Searching in a string. -*- coding: utf-8 -*-
|
|
Copyright (C) 2005-2020 Free Software Foundation, Inc.
|
|
Written by Bruno Haible <bruno@clisp.org>, 2005.
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>. */
|
|
|
|
#include <config.h>
|
|
|
|
/* Specification. */
|
|
#include <string.h>
|
|
|
|
#include <stdbool.h>
|
|
#include <stddef.h> /* for NULL, in case a nonstandard string.h lacks it */
|
|
#include <stdlib.h>
|
|
|
|
#include "malloca.h"
|
|
#include "mbuiter.h"
|
|
|
|
/* Knuth-Morris-Pratt algorithm. */
|
|
#define UNIT unsigned char
|
|
#define CANON_ELEMENT(c) c
|
|
#include "str-kmp.h"
|
|
|
|
/* Knuth-Morris-Pratt algorithm.
|
|
See https://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm
|
|
Return a boolean indicating success:
|
|
Return true and set *RESULTP if the search was completed.
|
|
Return false if it was aborted because not enough memory was available. */
|
|
static bool
|
|
knuth_morris_pratt_multibyte (const char *haystack, const char *needle,
|
|
const char **resultp)
|
|
{
|
|
size_t m = mbslen (needle);
|
|
mbchar_t *needle_mbchars;
|
|
size_t *table;
|
|
|
|
/* Allocate room for needle_mbchars and the table. */
|
|
void *memory = nmalloca (m, sizeof (mbchar_t) + sizeof (size_t));
|
|
void *table_memory;
|
|
if (memory == NULL)
|
|
return false;
|
|
needle_mbchars = memory;
|
|
table_memory = needle_mbchars + m;
|
|
table = table_memory;
|
|
|
|
/* Fill needle_mbchars. */
|
|
{
|
|
mbui_iterator_t iter;
|
|
size_t j;
|
|
|
|
j = 0;
|
|
for (mbui_init (iter, needle); mbui_avail (iter); mbui_advance (iter), j++)
|
|
mb_copy (&needle_mbchars[j], &mbui_cur (iter));
|
|
}
|
|
|
|
/* Fill the table.
|
|
For 0 < i < m:
|
|
0 < table[i] <= i is defined such that
|
|
forall 0 < x < table[i]: needle[x..i-1] != needle[0..i-1-x],
|
|
and table[i] is as large as possible with this property.
|
|
This implies:
|
|
1) For 0 < i < m:
|
|
If table[i] < i,
|
|
needle[table[i]..i-1] = needle[0..i-1-table[i]].
|
|
2) For 0 < i < m:
|
|
rhaystack[0..i-1] == needle[0..i-1]
|
|
and exists h, i <= h < m: rhaystack[h] != needle[h]
|
|
implies
|
|
forall 0 <= x < table[i]: rhaystack[x..x+m-1] != needle[0..m-1].
|
|
table[0] remains uninitialized. */
|
|
{
|
|
size_t i, j;
|
|
|
|
/* i = 1: Nothing to verify for x = 0. */
|
|
table[1] = 1;
|
|
j = 0;
|
|
|
|
for (i = 2; i < m; i++)
|
|
{
|
|
/* Here: j = i-1 - table[i-1].
|
|
The inequality needle[x..i-1] != needle[0..i-1-x] is known to hold
|
|
for x < table[i-1], by induction.
|
|
Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */
|
|
mbchar_t *b = &needle_mbchars[i - 1];
|
|
|
|
for (;;)
|
|
{
|
|
/* Invariants: The inequality needle[x..i-1] != needle[0..i-1-x]
|
|
is known to hold for x < i-1-j.
|
|
Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */
|
|
if (mb_equal (*b, needle_mbchars[j]))
|
|
{
|
|
/* Set table[i] := i-1-j. */
|
|
table[i] = i - ++j;
|
|
break;
|
|
}
|
|
/* The inequality needle[x..i-1] != needle[0..i-1-x] also holds
|
|
for x = i-1-j, because
|
|
needle[i-1] != needle[j] = needle[i-1-x]. */
|
|
if (j == 0)
|
|
{
|
|
/* The inequality holds for all possible x. */
|
|
table[i] = i;
|
|
break;
|
|
}
|
|
/* The inequality needle[x..i-1] != needle[0..i-1-x] also holds
|
|
for i-1-j < x < i-1-j+table[j], because for these x:
|
|
needle[x..i-2]
|
|
= needle[x-(i-1-j)..j-1]
|
|
!= needle[0..j-1-(x-(i-1-j))] (by definition of table[j])
|
|
= needle[0..i-2-x],
|
|
hence needle[x..i-1] != needle[0..i-1-x].
|
|
Furthermore
|
|
needle[i-1-j+table[j]..i-2]
|
|
= needle[table[j]..j-1]
|
|
= needle[0..j-1-table[j]] (by definition of table[j]). */
|
|
j = j - table[j];
|
|
}
|
|
/* Here: j = i - table[i]. */
|
|
}
|
|
}
|
|
|
|
/* Search, using the table to accelerate the processing. */
|
|
{
|
|
size_t j;
|
|
mbui_iterator_t rhaystack;
|
|
mbui_iterator_t phaystack;
|
|
|
|
*resultp = NULL;
|
|
j = 0;
|
|
mbui_init (rhaystack, haystack);
|
|
mbui_init (phaystack, haystack);
|
|
/* Invariant: phaystack = rhaystack + j. */
|
|
while (mbui_avail (phaystack))
|
|
if (mb_equal (needle_mbchars[j], mbui_cur (phaystack)))
|
|
{
|
|
j++;
|
|
mbui_advance (phaystack);
|
|
if (j == m)
|
|
{
|
|
/* The entire needle has been found. */
|
|
*resultp = mbui_cur_ptr (rhaystack);
|
|
break;
|
|
}
|
|
}
|
|
else if (j > 0)
|
|
{
|
|
/* Found a match of needle[0..j-1], mismatch at needle[j]. */
|
|
size_t count = table[j];
|
|
j -= count;
|
|
for (; count > 0; count--)
|
|
{
|
|
if (!mbui_avail (rhaystack))
|
|
abort ();
|
|
mbui_advance (rhaystack);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Found a mismatch at needle[0] already. */
|
|
if (!mbui_avail (rhaystack))
|
|
abort ();
|
|
mbui_advance (rhaystack);
|
|
mbui_advance (phaystack);
|
|
}
|
|
}
|
|
|
|
freea (memory);
|
|
return true;
|
|
}
|
|
|
|
/* Find the first occurrence of the character string NEEDLE in the character
|
|
string HAYSTACK. Return NULL if NEEDLE is not found in HAYSTACK. */
|
|
char *
|
|
mbsstr (const char *haystack, const char *needle)
|
|
{
|
|
/* Be careful not to look at the entire extent of haystack or needle
|
|
until needed. This is useful because of these two cases:
|
|
- haystack may be very long, and a match of needle found early,
|
|
- needle may be very long, and not even a short initial segment of
|
|
needle may be found in haystack. */
|
|
if (MB_CUR_MAX > 1)
|
|
{
|
|
mbui_iterator_t iter_needle;
|
|
|
|
mbui_init (iter_needle, needle);
|
|
if (mbui_avail (iter_needle))
|
|
{
|
|
/* Minimizing the worst-case complexity:
|
|
Let n = mbslen(haystack), m = mbslen(needle).
|
|
The naïve algorithm is O(n*m) worst-case.
|
|
The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
|
|
memory allocation.
|
|
To achieve linear complexity and yet amortize the cost of the
|
|
memory allocation, we activate the Knuth-Morris-Pratt algorithm
|
|
only once the naïve algorithm has already run for some time; more
|
|
precisely, when
|
|
- the outer loop count is >= 10,
|
|
- the average number of comparisons per outer loop is >= 5,
|
|
- the total number of comparisons is >= m.
|
|
But we try it only once. If the memory allocation attempt failed,
|
|
we don't retry it. */
|
|
bool try_kmp = true;
|
|
size_t outer_loop_count = 0;
|
|
size_t comparison_count = 0;
|
|
size_t last_ccount = 0; /* last comparison count */
|
|
mbui_iterator_t iter_needle_last_ccount; /* = needle + last_ccount */
|
|
|
|
mbui_iterator_t iter_haystack;
|
|
|
|
mbui_init (iter_needle_last_ccount, needle);
|
|
mbui_init (iter_haystack, haystack);
|
|
for (;; mbui_advance (iter_haystack))
|
|
{
|
|
if (!mbui_avail (iter_haystack))
|
|
/* No match. */
|
|
return NULL;
|
|
|
|
/* See whether it's advisable to use an asymptotically faster
|
|
algorithm. */
|
|
if (try_kmp
|
|
&& outer_loop_count >= 10
|
|
&& comparison_count >= 5 * outer_loop_count)
|
|
{
|
|
/* See if needle + comparison_count now reaches the end of
|
|
needle. */
|
|
size_t count = comparison_count - last_ccount;
|
|
for (;
|
|
count > 0 && mbui_avail (iter_needle_last_ccount);
|
|
count--)
|
|
mbui_advance (iter_needle_last_ccount);
|
|
last_ccount = comparison_count;
|
|
if (!mbui_avail (iter_needle_last_ccount))
|
|
{
|
|
/* Try the Knuth-Morris-Pratt algorithm. */
|
|
const char *result;
|
|
bool success =
|
|
knuth_morris_pratt_multibyte (haystack, needle,
|
|
&result);
|
|
if (success)
|
|
return (char *) result;
|
|
try_kmp = false;
|
|
}
|
|
}
|
|
|
|
outer_loop_count++;
|
|
comparison_count++;
|
|
if (mb_equal (mbui_cur (iter_haystack), mbui_cur (iter_needle)))
|
|
/* The first character matches. */
|
|
{
|
|
mbui_iterator_t rhaystack;
|
|
mbui_iterator_t rneedle;
|
|
|
|
memcpy (&rhaystack, &iter_haystack, sizeof (mbui_iterator_t));
|
|
mbui_advance (rhaystack);
|
|
|
|
mbui_init (rneedle, needle);
|
|
if (!mbui_avail (rneedle))
|
|
abort ();
|
|
mbui_advance (rneedle);
|
|
|
|
for (;; mbui_advance (rhaystack), mbui_advance (rneedle))
|
|
{
|
|
if (!mbui_avail (rneedle))
|
|
/* Found a match. */
|
|
return (char *) mbui_cur_ptr (iter_haystack);
|
|
if (!mbui_avail (rhaystack))
|
|
/* No match. */
|
|
return NULL;
|
|
comparison_count++;
|
|
if (!mb_equal (mbui_cur (rhaystack), mbui_cur (rneedle)))
|
|
/* Nothing in this round. */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
return (char *) haystack;
|
|
}
|
|
else
|
|
{
|
|
if (*needle != '\0')
|
|
{
|
|
/* Minimizing the worst-case complexity:
|
|
Let n = strlen(haystack), m = strlen(needle).
|
|
The naïve algorithm is O(n*m) worst-case.
|
|
The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a
|
|
memory allocation.
|
|
To achieve linear complexity and yet amortize the cost of the
|
|
memory allocation, we activate the Knuth-Morris-Pratt algorithm
|
|
only once the naïve algorithm has already run for some time; more
|
|
precisely, when
|
|
- the outer loop count is >= 10,
|
|
- the average number of comparisons per outer loop is >= 5,
|
|
- the total number of comparisons is >= m.
|
|
But we try it only once. If the memory allocation attempt failed,
|
|
we don't retry it. */
|
|
bool try_kmp = true;
|
|
size_t outer_loop_count = 0;
|
|
size_t comparison_count = 0;
|
|
size_t last_ccount = 0; /* last comparison count */
|
|
const char *needle_last_ccount = needle; /* = needle + last_ccount */
|
|
|
|
/* Speed up the following searches of needle by caching its first
|
|
character. */
|
|
char b = *needle++;
|
|
|
|
for (;; haystack++)
|
|
{
|
|
if (*haystack == '\0')
|
|
/* No match. */
|
|
return NULL;
|
|
|
|
/* See whether it's advisable to use an asymptotically faster
|
|
algorithm. */
|
|
if (try_kmp
|
|
&& outer_loop_count >= 10
|
|
&& comparison_count >= 5 * outer_loop_count)
|
|
{
|
|
/* See if needle + comparison_count now reaches the end of
|
|
needle. */
|
|
if (needle_last_ccount != NULL)
|
|
{
|
|
needle_last_ccount +=
|
|
strnlen (needle_last_ccount,
|
|
comparison_count - last_ccount);
|
|
if (*needle_last_ccount == '\0')
|
|
needle_last_ccount = NULL;
|
|
last_ccount = comparison_count;
|
|
}
|
|
if (needle_last_ccount == NULL)
|
|
{
|
|
/* Try the Knuth-Morris-Pratt algorithm. */
|
|
const unsigned char *result;
|
|
bool success =
|
|
knuth_morris_pratt ((const unsigned char *) haystack,
|
|
(const unsigned char *) (needle - 1),
|
|
strlen (needle - 1),
|
|
&result);
|
|
if (success)
|
|
return (char *) result;
|
|
try_kmp = false;
|
|
}
|
|
}
|
|
|
|
outer_loop_count++;
|
|
comparison_count++;
|
|
if (*haystack == b)
|
|
/* The first character matches. */
|
|
{
|
|
const char *rhaystack = haystack + 1;
|
|
const char *rneedle = needle;
|
|
|
|
for (;; rhaystack++, rneedle++)
|
|
{
|
|
if (*rneedle == '\0')
|
|
/* Found a match. */
|
|
return (char *) haystack;
|
|
if (*rhaystack == '\0')
|
|
/* No match. */
|
|
return NULL;
|
|
comparison_count++;
|
|
if (*rhaystack != *rneedle)
|
|
/* Nothing in this round. */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
return (char *) haystack;
|
|
}
|
|
}
|