2443 lines
74 KiB
Plaintext
2443 lines
74 KiB
Plaintext
%{
|
||
/* Parse a string into an internal timestamp.
|
||
|
||
Copyright (C) 1999-2000, 2002-2022 Free Software Foundation, Inc.
|
||
|
||
This program is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <https://www.gnu.org/licenses/>. */
|
||
|
||
/* Originally written by Steven M. Bellovin <smb@research.att.com> while
|
||
at the University of North Carolina at Chapel Hill. Later tweaked by
|
||
a couple of people on Usenet. Completely overhauled by Rich $alz
|
||
<rsalz@bbn.com> and Jim Berets <jberets@bbn.com> in August, 1990.
|
||
|
||
Modified by Assaf Gordon <assafgordon@gmail.com> in 2016 to add
|
||
debug output.
|
||
|
||
Modified by Paul Eggert <eggert@twinsun.com> in 1999 to do the
|
||
right thing about local DST. Also modified by Paul Eggert
|
||
<eggert@cs.ucla.edu> in 2004 to support nanosecond-resolution
|
||
timestamps, in 2004 to support TZ strings in dates, and in 2017 and 2020 to
|
||
check for integer overflow and to support longer-than-'long'
|
||
'time_t' and 'tv_nsec'. */
|
||
|
||
#include <config.h>
|
||
|
||
#include "parse-datetime.h"
|
||
|
||
#include "idx.h"
|
||
#include "intprops.h"
|
||
#include "timespec.h"
|
||
#include "verify.h"
|
||
#include "strftime.h"
|
||
|
||
/* There's no need to extend the stack, so there's no need to involve
|
||
alloca. */
|
||
#define YYSTACK_USE_ALLOCA 0
|
||
|
||
/* Tell Bison how much stack space is needed. 20 should be plenty for
|
||
this grammar, which is not right recursive. Beware setting it too
|
||
high, since that might cause problems on machines whose
|
||
implementations have lame stack-overflow checking. */
|
||
#define YYMAXDEPTH 20
|
||
#define YYINITDEPTH YYMAXDEPTH
|
||
|
||
/* Since the code of parse-datetime.y is not included in the Emacs executable
|
||
itself, there is no need to #define static in this file. Even if
|
||
the code were included in the Emacs executable, it probably
|
||
wouldn't do any harm to #undef it here; this will only cause
|
||
problems if we try to write to a static variable, which I don't
|
||
think this code needs to do. */
|
||
#ifdef emacs
|
||
# undef static
|
||
#endif
|
||
|
||
#include <inttypes.h>
|
||
#include <c-ctype.h>
|
||
#include <stdarg.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
|
||
#include "gettext.h"
|
||
|
||
#define _(str) gettext (str)
|
||
|
||
/* Bison's skeleton tests _STDLIB_H, while some stdlib.h headers
|
||
use _STDLIB_H_ as witness. Map the latter to the one bison uses. */
|
||
/* FIXME: this is temporary. Remove when we have a mechanism to ensure
|
||
that the version we're using is fixed, too. */
|
||
#ifdef _STDLIB_H_
|
||
# undef _STDLIB_H
|
||
# define _STDLIB_H 1
|
||
#endif
|
||
|
||
/* Shift A right by B bits portably, by dividing A by 2**B and
|
||
truncating towards minus infinity. A and B should be free of side
|
||
effects, and B should be in the range 0 <= B <= INT_BITS - 2, where
|
||
INT_BITS is the number of useful bits in an int. GNU code can
|
||
assume that INT_BITS is at least 32.
|
||
|
||
ISO C99 says that A >> B is implementation-defined if A < 0. Some
|
||
implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift
|
||
right in the usual way when A < 0, so SHR falls back on division if
|
||
ordinary A >> B doesn't seem to be the usual signed shift. */
|
||
#define SHR(a, b) \
|
||
(-1 >> 1 == -1 \
|
||
? (a) >> (b) \
|
||
: (a) / (1 << (b)) - ((a) % (1 << (b)) < 0))
|
||
|
||
#define HOUR(x) (60 * 60 * (x))
|
||
|
||
#define STREQ(a, b) (strcmp (a, b) == 0)
|
||
|
||
/* Verify that time_t is an integer as POSIX requires, and that every
|
||
time_t value fits in intmax_t. Please file a bug report if these
|
||
assumptions are false on your platform. */
|
||
verify (TYPE_IS_INTEGER (time_t));
|
||
verify (!TYPE_SIGNED (time_t) || INTMAX_MIN <= TYPE_MINIMUM (time_t));
|
||
verify (TYPE_MAXIMUM (time_t) <= INTMAX_MAX);
|
||
|
||
/* True if N is out of range for time_t. */
|
||
static bool
|
||
time_overflow (intmax_t n)
|
||
{
|
||
return ! ((TYPE_SIGNED (time_t) ? TYPE_MINIMUM (time_t) <= n : 0 <= n)
|
||
&& n <= TYPE_MAXIMUM (time_t));
|
||
}
|
||
|
||
/* Convert a possibly-signed character to an unsigned character. This is
|
||
a bit safer than casting to unsigned char, since it catches some type
|
||
errors that the cast doesn't. */
|
||
static unsigned char to_uchar (char ch) { return ch; }
|
||
|
||
static void _GL_ATTRIBUTE_FORMAT ((__printf__, 1, 2))
|
||
dbg_printf (char const *msg, ...)
|
||
{
|
||
va_list args;
|
||
/* TODO: use gnulib's 'program_name' instead? */
|
||
fputs ("date: ", stderr);
|
||
|
||
va_start (args, msg);
|
||
vfprintf (stderr, msg, args);
|
||
va_end (args);
|
||
}
|
||
|
||
|
||
/* An integer value, and the number of digits in its textual
|
||
representation. */
|
||
typedef struct
|
||
{
|
||
bool negative;
|
||
intmax_t value;
|
||
idx_t digits;
|
||
} textint;
|
||
|
||
/* An entry in the lexical lookup table. */
|
||
typedef struct
|
||
{
|
||
char const *name;
|
||
int type;
|
||
int value;
|
||
} table;
|
||
|
||
/* Meridian: am, pm, or 24-hour style. */
|
||
enum { MERam, MERpm, MER24 };
|
||
|
||
/* A reasonable upper bound for the buffer used in debug output. */
|
||
enum { DBGBUFSIZE = 100 };
|
||
|
||
enum { BILLION = 1000000000, LOG10_BILLION = 9 };
|
||
|
||
/* Relative times. */
|
||
typedef struct
|
||
{
|
||
/* Relative year, month, day, hour, minutes, seconds, and nanoseconds. */
|
||
intmax_t year;
|
||
intmax_t month;
|
||
intmax_t day;
|
||
intmax_t hour;
|
||
intmax_t minutes;
|
||
intmax_t seconds;
|
||
int ns;
|
||
} relative_time;
|
||
|
||
#if HAVE_COMPOUND_LITERALS
|
||
# define RELATIVE_TIME_0 ((relative_time) { 0, 0, 0, 0, 0, 0, 0 })
|
||
#else
|
||
static relative_time const RELATIVE_TIME_0;
|
||
#endif
|
||
|
||
/* Information passed to and from the parser. */
|
||
typedef struct
|
||
{
|
||
/* The input string remaining to be parsed. */
|
||
const char *input;
|
||
|
||
/* N, if this is the Nth Tuesday. */
|
||
intmax_t day_ordinal;
|
||
|
||
/* Day of week; Sunday is 0. */
|
||
int day_number;
|
||
|
||
/* tm_isdst flag for the local zone. */
|
||
int local_isdst;
|
||
|
||
/* Time zone, in seconds east of UT. */
|
||
int time_zone;
|
||
|
||
/* Style used for time. */
|
||
int meridian;
|
||
|
||
/* Gregorian year, month, day, hour, minutes, seconds, and nanoseconds. */
|
||
textint year;
|
||
intmax_t month;
|
||
intmax_t day;
|
||
intmax_t hour;
|
||
intmax_t minutes;
|
||
struct timespec seconds; /* includes nanoseconds */
|
||
|
||
/* Relative year, month, day, hour, minutes, seconds, and nanoseconds. */
|
||
relative_time rel;
|
||
|
||
/* Presence or counts of nonterminals of various flavors parsed so far. */
|
||
bool timespec_seen;
|
||
bool rels_seen;
|
||
idx_t dates_seen;
|
||
idx_t days_seen;
|
||
idx_t local_zones_seen;
|
||
idx_t dsts_seen;
|
||
idx_t times_seen;
|
||
idx_t zones_seen;
|
||
bool year_seen;
|
||
|
||
#ifdef GNULIB_PARSE_DATETIME2
|
||
/* Print debugging output to stderr. */
|
||
bool parse_datetime_debug;
|
||
#endif
|
||
|
||
/* Which of the 'seen' parts have been printed when debugging. */
|
||
bool debug_dates_seen;
|
||
bool debug_days_seen;
|
||
bool debug_local_zones_seen;
|
||
bool debug_times_seen;
|
||
bool debug_zones_seen;
|
||
bool debug_year_seen;
|
||
|
||
/* The user specified explicit ordinal day value. */
|
||
bool debug_ordinal_day_seen;
|
||
|
||
/* Table of local time zone abbreviations, terminated by a null entry. */
|
||
table local_time_zone_table[3];
|
||
} parser_control;
|
||
|
||
static bool
|
||
debugging (parser_control const *pc)
|
||
{
|
||
#ifdef GNULIB_PARSE_DATETIME2
|
||
return pc->parse_datetime_debug;
|
||
#else
|
||
return false;
|
||
#endif
|
||
}
|
||
|
||
union YYSTYPE;
|
||
static int yylex (union YYSTYPE *, parser_control *);
|
||
static int yyerror (parser_control const *, char const *);
|
||
static bool time_zone_hhmm (parser_control *, textint, intmax_t);
|
||
|
||
/* Extract into *PC any date and time info from a string of digits
|
||
of the form e.g., YYYYMMDD, YYMMDD, HHMM, HH (and sometimes YYY,
|
||
YYYY, ...). */
|
||
static void
|
||
digits_to_date_time (parser_control *pc, textint text_int)
|
||
{
|
||
if (pc->dates_seen && ! pc->year.digits
|
||
&& ! pc->rels_seen && (pc->times_seen || 2 < text_int.digits))
|
||
{
|
||
pc->year_seen = true;
|
||
pc->year = text_int;
|
||
}
|
||
else
|
||
{
|
||
if (4 < text_int.digits)
|
||
{
|
||
pc->dates_seen++;
|
||
pc->day = text_int.value % 100;
|
||
pc->month = (text_int.value / 100) % 100;
|
||
pc->year.value = text_int.value / 10000;
|
||
pc->year.digits = text_int.digits - 4;
|
||
}
|
||
else
|
||
{
|
||
pc->times_seen++;
|
||
if (text_int.digits <= 2)
|
||
{
|
||
pc->hour = text_int.value;
|
||
pc->minutes = 0;
|
||
}
|
||
else
|
||
{
|
||
pc->hour = text_int.value / 100;
|
||
pc->minutes = text_int.value % 100;
|
||
}
|
||
pc->seconds.tv_sec = 0;
|
||
pc->seconds.tv_nsec = 0;
|
||
pc->meridian = MER24;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Increment PC->rel by FACTOR * REL (FACTOR is 1 or -1). Return true
|
||
if successful, false if an overflow occurred. */
|
||
static bool
|
||
apply_relative_time (parser_control *pc, relative_time rel, int factor)
|
||
{
|
||
if (factor < 0
|
||
? (INT_SUBTRACT_WRAPV (pc->rel.ns, rel.ns, &pc->rel.ns)
|
||
| INT_SUBTRACT_WRAPV (pc->rel.seconds, rel.seconds, &pc->rel.seconds)
|
||
| INT_SUBTRACT_WRAPV (pc->rel.minutes, rel.minutes, &pc->rel.minutes)
|
||
| INT_SUBTRACT_WRAPV (pc->rel.hour, rel.hour, &pc->rel.hour)
|
||
| INT_SUBTRACT_WRAPV (pc->rel.day, rel.day, &pc->rel.day)
|
||
| INT_SUBTRACT_WRAPV (pc->rel.month, rel.month, &pc->rel.month)
|
||
| INT_SUBTRACT_WRAPV (pc->rel.year, rel.year, &pc->rel.year))
|
||
: (INT_ADD_WRAPV (pc->rel.ns, rel.ns, &pc->rel.ns)
|
||
| INT_ADD_WRAPV (pc->rel.seconds, rel.seconds, &pc->rel.seconds)
|
||
| INT_ADD_WRAPV (pc->rel.minutes, rel.minutes, &pc->rel.minutes)
|
||
| INT_ADD_WRAPV (pc->rel.hour, rel.hour, &pc->rel.hour)
|
||
| INT_ADD_WRAPV (pc->rel.day, rel.day, &pc->rel.day)
|
||
| INT_ADD_WRAPV (pc->rel.month, rel.month, &pc->rel.month)
|
||
| INT_ADD_WRAPV (pc->rel.year, rel.year, &pc->rel.year)))
|
||
return false;
|
||
pc->rels_seen = true;
|
||
return true;
|
||
}
|
||
|
||
/* Set PC-> hour, minutes, seconds and nanoseconds members from arguments. */
|
||
static void
|
||
set_hhmmss (parser_control *pc, intmax_t hour, intmax_t minutes,
|
||
time_t sec, int nsec)
|
||
{
|
||
pc->hour = hour;
|
||
pc->minutes = minutes;
|
||
pc->seconds.tv_sec = sec;
|
||
pc->seconds.tv_nsec = nsec;
|
||
}
|
||
|
||
/* Return a textual representation of the day ordinal/number values
|
||
in the parser_control struct (e.g., "last wed", "this tues", "thu"). */
|
||
static const char *
|
||
str_days (parser_control *pc, char *buffer, int n)
|
||
{
|
||
/* TODO: use relative_time_table for reverse lookup. */
|
||
static char const ordinal_values[][11] = {
|
||
"last",
|
||
"this",
|
||
"next/first",
|
||
"(SECOND)", /* SECOND is commented out in relative_time_table. */
|
||
"third",
|
||
"fourth",
|
||
"fifth",
|
||
"sixth",
|
||
"seventh",
|
||
"eight",
|
||
"ninth",
|
||
"tenth",
|
||
"eleventh",
|
||
"twelfth"
|
||
};
|
||
|
||
static char const days_values[][4] = {
|
||
"Sun",
|
||
"Mon",
|
||
"Tue",
|
||
"Wed",
|
||
"Thu",
|
||
"Fri",
|
||
"Sat"
|
||
};
|
||
|
||
int len;
|
||
|
||
/* Don't add an ordinal prefix if the user didn't specify it
|
||
(e.g., "this wed" vs "wed"). */
|
||
if (pc->debug_ordinal_day_seen)
|
||
{
|
||
/* Use word description if possible (e.g., -1 = last, 3 = third). */
|
||
len = (-1 <= pc->day_ordinal && pc->day_ordinal <= 12
|
||
? snprintf (buffer, n, "%s", ordinal_values[pc->day_ordinal + 1])
|
||
: snprintf (buffer, n, "%"PRIdMAX, pc->day_ordinal));
|
||
}
|
||
else
|
||
{
|
||
buffer[0] = '\0';
|
||
len = 0;
|
||
}
|
||
|
||
/* Add the day name */
|
||
if (0 <= pc->day_number && pc->day_number <= 6 && 0 <= len && len < n)
|
||
snprintf (buffer + len, n - len, &" %s"[len == 0],
|
||
days_values[pc->day_number]);
|
||
else
|
||
{
|
||
/* invalid day_number value - should never happen */
|
||
}
|
||
return buffer;
|
||
}
|
||
|
||
/* Convert a time zone to its string representation. */
|
||
|
||
enum { TIME_ZONE_BUFSIZE = INT_STRLEN_BOUND (intmax_t) + sizeof ":MM:SS" } ;
|
||
|
||
static char const *
|
||
time_zone_str (int time_zone, char time_zone_buf[TIME_ZONE_BUFSIZE])
|
||
{
|
||
char *p = time_zone_buf;
|
||
char sign = time_zone < 0 ? '-' : '+';
|
||
int hour = abs (time_zone / (60 * 60));
|
||
p += sprintf (time_zone_buf, "%c%02d", sign, hour);
|
||
int offset_from_hour = abs (time_zone % (60 * 60));
|
||
if (offset_from_hour != 0)
|
||
{
|
||
int mm = offset_from_hour / 60;
|
||
int ss = offset_from_hour % 60;
|
||
*p++ = ':';
|
||
*p++ = '0' + mm / 10;
|
||
*p++ = '0' + mm % 10;
|
||
if (ss)
|
||
{
|
||
*p++ = ':';
|
||
*p++ = '0' + ss / 10;
|
||
*p++ = '0' + ss % 10;
|
||
}
|
||
*p = '\0';
|
||
}
|
||
return time_zone_buf;
|
||
}
|
||
|
||
/* debugging: print the current time in the parser_control structure.
|
||
The parser will increment "*_seen" members for those which were parsed.
|
||
This function will print only newly seen parts. */
|
||
static void
|
||
debug_print_current_time (char const *item, parser_control *pc)
|
||
{
|
||
bool space = false;
|
||
|
||
if (!debugging (pc))
|
||
return;
|
||
|
||
/* no newline, more items printed below */
|
||
dbg_printf (_("parsed %s part: "), item);
|
||
|
||
if (pc->dates_seen && !pc->debug_dates_seen)
|
||
{
|
||
/*TODO: use pc->year.negative? */
|
||
fprintf (stderr, "(Y-M-D) %04"PRIdMAX"-%02"PRIdMAX"-%02"PRIdMAX,
|
||
pc->year.value, pc->month, pc->day);
|
||
pc->debug_dates_seen = true;
|
||
space = true;
|
||
}
|
||
|
||
if (pc->year_seen != pc->debug_year_seen)
|
||
{
|
||
if (space)
|
||
fputc (' ', stderr);
|
||
fprintf (stderr, _("year: %04"PRIdMAX), pc->year.value);
|
||
|
||
pc->debug_year_seen = pc->year_seen;
|
||
space = true;
|
||
}
|
||
|
||
if (pc->times_seen && !pc->debug_times_seen)
|
||
{
|
||
intmax_t sec = pc->seconds.tv_sec;
|
||
fprintf (stderr, &" %02"PRIdMAX":%02"PRIdMAX":%02"PRIdMAX[!space],
|
||
pc->hour, pc->minutes, sec);
|
||
if (pc->seconds.tv_nsec != 0)
|
||
{
|
||
int nsec = pc->seconds.tv_nsec;
|
||
fprintf (stderr, ".%09d", nsec);
|
||
}
|
||
if (pc->meridian == MERpm)
|
||
fputs ("pm", stderr);
|
||
|
||
pc->debug_times_seen = true;
|
||
space = true;
|
||
}
|
||
|
||
if (pc->days_seen && !pc->debug_days_seen)
|
||
{
|
||
if (space)
|
||
fputc (' ', stderr);
|
||
char tmp[DBGBUFSIZE];
|
||
fprintf (stderr, _("%s (day ordinal=%"PRIdMAX" number=%d)"),
|
||
str_days (pc, tmp, sizeof tmp),
|
||
pc->day_ordinal, pc->day_number);
|
||
pc->debug_days_seen = true;
|
||
space = true;
|
||
}
|
||
|
||
/* local zone strings only change the DST settings,
|
||
not the timezone value. If seen, inform about the DST. */
|
||
if (pc->local_zones_seen && !pc->debug_local_zones_seen)
|
||
{
|
||
fprintf (stderr, &" isdst=%d%s"[!space],
|
||
pc->local_isdst, pc->dsts_seen ? " DST" : "");
|
||
pc->debug_local_zones_seen = true;
|
||
space = true;
|
||
}
|
||
|
||
if (pc->zones_seen && !pc->debug_zones_seen)
|
||
{
|
||
char time_zone_buf[TIME_ZONE_BUFSIZE];
|
||
fprintf (stderr, &" UTC%s"[!space],
|
||
time_zone_str (pc->time_zone, time_zone_buf));
|
||
pc->debug_zones_seen = true;
|
||
space = true;
|
||
}
|
||
|
||
if (pc->timespec_seen)
|
||
{
|
||
intmax_t sec = pc->seconds.tv_sec;
|
||
if (space)
|
||
fputc (' ', stderr);
|
||
fprintf (stderr, _("number of seconds: %"PRIdMAX), sec);
|
||
}
|
||
|
||
fputc ('\n', stderr);
|
||
}
|
||
|
||
/* Debugging: print the current relative values. */
|
||
|
||
static bool
|
||
print_rel_part (bool space, intmax_t val, char const *name)
|
||
{
|
||
if (val == 0)
|
||
return space;
|
||
fprintf (stderr, &" %+"PRIdMAX" %s"[!space], val, name);
|
||
return true;
|
||
}
|
||
|
||
static void
|
||
debug_print_relative_time (char const *item, parser_control const *pc)
|
||
{
|
||
bool space = false;
|
||
|
||
if (!debugging (pc))
|
||
return;
|
||
|
||
/* no newline, more items printed below */
|
||
dbg_printf (_("parsed %s part: "), item);
|
||
|
||
if (pc->rel.year == 0 && pc->rel.month == 0 && pc->rel.day == 0
|
||
&& pc->rel.hour == 0 && pc->rel.minutes == 0 && pc->rel.seconds == 0
|
||
&& pc->rel.ns == 0)
|
||
{
|
||
/* Special case: relative time of this/today/now */
|
||
fputs (_("today/this/now\n"), stderr);
|
||
return;
|
||
}
|
||
|
||
space = print_rel_part (space, pc->rel.year, "year(s)");
|
||
space = print_rel_part (space, pc->rel.month, "month(s)");
|
||
space = print_rel_part (space, pc->rel.day, "day(s)");
|
||
space = print_rel_part (space, pc->rel.hour, "hour(s)");
|
||
space = print_rel_part (space, pc->rel.minutes, "minutes");
|
||
space = print_rel_part (space, pc->rel.seconds, "seconds");
|
||
print_rel_part (space, pc->rel.ns, "nanoseconds");
|
||
|
||
fputc ('\n', stderr);
|
||
}
|
||
|
||
|
||
|
||
%}
|
||
|
||
/* We want a reentrant parser, even if the TZ manipulation and the calls to
|
||
localtime and gmtime are not reentrant. */
|
||
%define api.pure
|
||
%parse-param { parser_control *pc }
|
||
%lex-param { parser_control *pc }
|
||
|
||
/* This grammar has 31 shift/reduce conflicts. */
|
||
%expect 31
|
||
|
||
%union
|
||
{
|
||
intmax_t intval;
|
||
textint textintval;
|
||
struct timespec timespec;
|
||
relative_time rel;
|
||
}
|
||
|
||
%token <intval> tAGO
|
||
%token tDST
|
||
|
||
%token tYEAR_UNIT tMONTH_UNIT tHOUR_UNIT tMINUTE_UNIT tSEC_UNIT
|
||
%token <intval> tDAY_UNIT tDAY_SHIFT
|
||
|
||
%token <intval> tDAY tDAYZONE tLOCAL_ZONE tMERIDIAN
|
||
%token <intval> tMONTH tORDINAL tZONE
|
||
|
||
%token <textintval> tSNUMBER tUNUMBER
|
||
%token <timespec> tSDECIMAL_NUMBER tUDECIMAL_NUMBER
|
||
|
||
%type <intval> o_colon_minutes
|
||
%type <timespec> seconds signed_seconds unsigned_seconds
|
||
|
||
%type <rel> relunit relunit_snumber dayshift
|
||
|
||
%%
|
||
|
||
spec:
|
||
timespec
|
||
| items
|
||
;
|
||
|
||
timespec:
|
||
'@' seconds
|
||
{
|
||
pc->seconds = $2;
|
||
pc->timespec_seen = true;
|
||
debug_print_current_time (_("number of seconds"), pc);
|
||
}
|
||
;
|
||
|
||
items:
|
||
/* empty */
|
||
| items item
|
||
;
|
||
|
||
item:
|
||
datetime
|
||
{
|
||
pc->times_seen++; pc->dates_seen++;
|
||
debug_print_current_time (_("datetime"), pc);
|
||
}
|
||
| time
|
||
{
|
||
pc->times_seen++;
|
||
debug_print_current_time (_("time"), pc);
|
||
}
|
||
| local_zone
|
||
{
|
||
pc->local_zones_seen++;
|
||
debug_print_current_time (_("local_zone"), pc);
|
||
}
|
||
| zone
|
||
{
|
||
pc->zones_seen++;
|
||
debug_print_current_time (_("zone"), pc);
|
||
}
|
||
| date
|
||
{
|
||
pc->dates_seen++;
|
||
debug_print_current_time (_("date"), pc);
|
||
}
|
||
| day
|
||
{
|
||
pc->days_seen++;
|
||
debug_print_current_time (_("day"), pc);
|
||
}
|
||
| rel
|
||
{
|
||
debug_print_relative_time (_("relative"), pc);
|
||
}
|
||
| number
|
||
{
|
||
debug_print_current_time (_("number"), pc);
|
||
}
|
||
| hybrid
|
||
{
|
||
debug_print_relative_time (_("hybrid"), pc);
|
||
}
|
||
;
|
||
|
||
datetime:
|
||
iso_8601_datetime
|
||
;
|
||
|
||
iso_8601_datetime:
|
||
iso_8601_date 'T' iso_8601_time
|
||
;
|
||
|
||
time:
|
||
tUNUMBER tMERIDIAN
|
||
{
|
||
set_hhmmss (pc, $1.value, 0, 0, 0);
|
||
pc->meridian = $2;
|
||
}
|
||
| tUNUMBER ':' tUNUMBER tMERIDIAN
|
||
{
|
||
set_hhmmss (pc, $1.value, $3.value, 0, 0);
|
||
pc->meridian = $4;
|
||
}
|
||
| tUNUMBER ':' tUNUMBER ':' unsigned_seconds tMERIDIAN
|
||
{
|
||
set_hhmmss (pc, $1.value, $3.value, $5.tv_sec, $5.tv_nsec);
|
||
pc->meridian = $6;
|
||
}
|
||
| iso_8601_time
|
||
;
|
||
|
||
iso_8601_time:
|
||
tUNUMBER zone_offset
|
||
{
|
||
set_hhmmss (pc, $1.value, 0, 0, 0);
|
||
pc->meridian = MER24;
|
||
}
|
||
| tUNUMBER ':' tUNUMBER o_zone_offset
|
||
{
|
||
set_hhmmss (pc, $1.value, $3.value, 0, 0);
|
||
pc->meridian = MER24;
|
||
}
|
||
| tUNUMBER ':' tUNUMBER ':' unsigned_seconds o_zone_offset
|
||
{
|
||
set_hhmmss (pc, $1.value, $3.value, $5.tv_sec, $5.tv_nsec);
|
||
pc->meridian = MER24;
|
||
}
|
||
;
|
||
|
||
o_zone_offset:
|
||
/* empty */
|
||
| zone_offset
|
||
;
|
||
|
||
zone_offset:
|
||
tSNUMBER o_colon_minutes
|
||
{
|
||
pc->zones_seen++;
|
||
if (! time_zone_hhmm (pc, $1, $2)) YYABORT;
|
||
}
|
||
;
|
||
|
||
/* Local zone strings affect only the DST setting, and take effect
|
||
only if the current TZ setting is relevant.
|
||
|
||
Example 1:
|
||
'EEST' is parsed as tLOCAL_ZONE, as it relates to the effective TZ:
|
||
TZ='Europe/Helsinki' date -d '2016-06-30 EEST'
|
||
|
||
Example 2:
|
||
'EEST' is parsed as tDAYZONE:
|
||
TZ='Asia/Tokyo' date -d '2016-06-30 EEST'
|
||
|
||
This is implemented by probing the next three calendar quarters
|
||
of the effective timezone and looking for DST changes -
|
||
if found, the timezone name (EEST) is inserted into
|
||
the lexical lookup table with type tLOCAL_ZONE.
|
||
(Search for 'quarter' comment in 'parse_datetime2'.)
|
||
*/
|
||
local_zone:
|
||
tLOCAL_ZONE
|
||
{ pc->local_isdst = $1; }
|
||
| tLOCAL_ZONE tDST
|
||
{
|
||
pc->local_isdst = 1;
|
||
pc->dsts_seen++;
|
||
}
|
||
;
|
||
|
||
/* Note 'T' is a special case, as it is used as the separator in ISO
|
||
8601 date and time of day representation. */
|
||
zone:
|
||
tZONE
|
||
{ pc->time_zone = $1; }
|
||
| 'T'
|
||
{ pc->time_zone = -HOUR (7); }
|
||
| tZONE relunit_snumber
|
||
{ pc->time_zone = $1;
|
||
if (! apply_relative_time (pc, $2, 1)) YYABORT;
|
||
debug_print_relative_time (_("relative"), pc);
|
||
}
|
||
| 'T' relunit_snumber
|
||
{ pc->time_zone = -HOUR (7);
|
||
if (! apply_relative_time (pc, $2, 1)) YYABORT;
|
||
debug_print_relative_time (_("relative"), pc);
|
||
}
|
||
| tZONE tSNUMBER o_colon_minutes
|
||
{ if (! time_zone_hhmm (pc, $2, $3)) YYABORT;
|
||
if (INT_ADD_WRAPV (pc->time_zone, $1, &pc->time_zone)) YYABORT; }
|
||
| tDAYZONE
|
||
{ pc->time_zone = $1 + 60 * 60; }
|
||
| tZONE tDST
|
||
{ pc->time_zone = $1 + 60 * 60; }
|
||
;
|
||
|
||
day:
|
||
tDAY
|
||
{
|
||
pc->day_ordinal = 0;
|
||
pc->day_number = $1;
|
||
}
|
||
| tDAY ','
|
||
{
|
||
pc->day_ordinal = 0;
|
||
pc->day_number = $1;
|
||
}
|
||
| tORDINAL tDAY
|
||
{
|
||
pc->day_ordinal = $1;
|
||
pc->day_number = $2;
|
||
pc->debug_ordinal_day_seen = true;
|
||
}
|
||
| tUNUMBER tDAY
|
||
{
|
||
pc->day_ordinal = $1.value;
|
||
pc->day_number = $2;
|
||
pc->debug_ordinal_day_seen = true;
|
||
}
|
||
;
|
||
|
||
date:
|
||
tUNUMBER '/' tUNUMBER
|
||
{
|
||
pc->month = $1.value;
|
||
pc->day = $3.value;
|
||
}
|
||
| tUNUMBER '/' tUNUMBER '/' tUNUMBER
|
||
{
|
||
/* Interpret as YYYY/MM/DD if the first value has 4 or more digits,
|
||
otherwise as MM/DD/YY.
|
||
The goal in recognizing YYYY/MM/DD is solely to support legacy
|
||
machine-generated dates like those in an RCS log listing. If
|
||
you want portability, use the ISO 8601 format. */
|
||
if (4 <= $1.digits)
|
||
{
|
||
if (debugging (pc))
|
||
{
|
||
intmax_t digits = $1.digits;
|
||
dbg_printf (_("warning: value %"PRIdMAX" has %"PRIdMAX" digits. "
|
||
"Assuming YYYY/MM/DD\n"),
|
||
$1.value, digits);
|
||
}
|
||
|
||
pc->year = $1;
|
||
pc->month = $3.value;
|
||
pc->day = $5.value;
|
||
}
|
||
else
|
||
{
|
||
if (debugging (pc))
|
||
dbg_printf (_("warning: value %"PRIdMAX" has less than 4 digits. "
|
||
"Assuming MM/DD/YY[YY]\n"),
|
||
$1.value);
|
||
|
||
pc->month = $1.value;
|
||
pc->day = $3.value;
|
||
pc->year = $5;
|
||
}
|
||
}
|
||
| tUNUMBER tMONTH tSNUMBER
|
||
{
|
||
/* E.g., 17-JUN-1992. */
|
||
pc->day = $1.value;
|
||
pc->month = $2;
|
||
if (INT_SUBTRACT_WRAPV (0, $3.value, &pc->year.value)) YYABORT;
|
||
pc->year.digits = $3.digits;
|
||
}
|
||
| tMONTH tSNUMBER tSNUMBER
|
||
{
|
||
/* E.g., JUN-17-1992. */
|
||
pc->month = $1;
|
||
if (INT_SUBTRACT_WRAPV (0, $2.value, &pc->day)) YYABORT;
|
||
if (INT_SUBTRACT_WRAPV (0, $3.value, &pc->year.value)) YYABORT;
|
||
pc->year.digits = $3.digits;
|
||
}
|
||
| tMONTH tUNUMBER
|
||
{
|
||
pc->month = $1;
|
||
pc->day = $2.value;
|
||
}
|
||
| tMONTH tUNUMBER ',' tUNUMBER
|
||
{
|
||
pc->month = $1;
|
||
pc->day = $2.value;
|
||
pc->year = $4;
|
||
}
|
||
| tUNUMBER tMONTH
|
||
{
|
||
pc->day = $1.value;
|
||
pc->month = $2;
|
||
}
|
||
| tUNUMBER tMONTH tUNUMBER
|
||
{
|
||
pc->day = $1.value;
|
||
pc->month = $2;
|
||
pc->year = $3;
|
||
}
|
||
| iso_8601_date
|
||
;
|
||
|
||
iso_8601_date:
|
||
tUNUMBER tSNUMBER tSNUMBER
|
||
{
|
||
/* ISO 8601 format. YYYY-MM-DD. */
|
||
pc->year = $1;
|
||
if (INT_SUBTRACT_WRAPV (0, $2.value, &pc->month)) YYABORT;
|
||
if (INT_SUBTRACT_WRAPV (0, $3.value, &pc->day)) YYABORT;
|
||
}
|
||
;
|
||
|
||
rel:
|
||
relunit tAGO
|
||
{ if (! apply_relative_time (pc, $1, $2)) YYABORT; }
|
||
| relunit
|
||
{ if (! apply_relative_time (pc, $1, 1)) YYABORT; }
|
||
| dayshift
|
||
{ if (! apply_relative_time (pc, $1, 1)) YYABORT; }
|
||
;
|
||
|
||
relunit:
|
||
tORDINAL tYEAR_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.year = $1; }
|
||
| tUNUMBER tYEAR_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.year = $1.value; }
|
||
| tYEAR_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.year = 1; }
|
||
| tORDINAL tMONTH_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.month = $1; }
|
||
| tUNUMBER tMONTH_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.month = $1.value; }
|
||
| tMONTH_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.month = 1; }
|
||
| tORDINAL tDAY_UNIT
|
||
{ $$ = RELATIVE_TIME_0;
|
||
if (INT_MULTIPLY_WRAPV ($1, $2, &$$.day)) YYABORT; }
|
||
| tUNUMBER tDAY_UNIT
|
||
{ $$ = RELATIVE_TIME_0;
|
||
if (INT_MULTIPLY_WRAPV ($1.value, $2, &$$.day)) YYABORT; }
|
||
| tDAY_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.day = $1; }
|
||
| tORDINAL tHOUR_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.hour = $1; }
|
||
| tUNUMBER tHOUR_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.hour = $1.value; }
|
||
| tHOUR_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.hour = 1; }
|
||
| tORDINAL tMINUTE_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.minutes = $1; }
|
||
| tUNUMBER tMINUTE_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.minutes = $1.value; }
|
||
| tMINUTE_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.minutes = 1; }
|
||
| tORDINAL tSEC_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.seconds = $1; }
|
||
| tUNUMBER tSEC_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.seconds = $1.value; }
|
||
| tSDECIMAL_NUMBER tSEC_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.seconds = $1.tv_sec; $$.ns = $1.tv_nsec; }
|
||
| tUDECIMAL_NUMBER tSEC_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.seconds = $1.tv_sec; $$.ns = $1.tv_nsec; }
|
||
| tSEC_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.seconds = 1; }
|
||
| relunit_snumber
|
||
;
|
||
|
||
relunit_snumber:
|
||
tSNUMBER tYEAR_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.year = $1.value; }
|
||
| tSNUMBER tMONTH_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.month = $1.value; }
|
||
| tSNUMBER tDAY_UNIT
|
||
{ $$ = RELATIVE_TIME_0;
|
||
if (INT_MULTIPLY_WRAPV ($1.value, $2, &$$.day)) YYABORT; }
|
||
| tSNUMBER tHOUR_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.hour = $1.value; }
|
||
| tSNUMBER tMINUTE_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.minutes = $1.value; }
|
||
| tSNUMBER tSEC_UNIT
|
||
{ $$ = RELATIVE_TIME_0; $$.seconds = $1.value; }
|
||
;
|
||
|
||
dayshift:
|
||
tDAY_SHIFT
|
||
{ $$ = RELATIVE_TIME_0; $$.day = $1; }
|
||
;
|
||
|
||
seconds: signed_seconds | unsigned_seconds;
|
||
|
||
signed_seconds:
|
||
tSDECIMAL_NUMBER
|
||
| tSNUMBER
|
||
{ if (time_overflow ($1.value)) YYABORT;
|
||
$$.tv_sec = $1.value; $$.tv_nsec = 0; }
|
||
;
|
||
|
||
unsigned_seconds:
|
||
tUDECIMAL_NUMBER
|
||
| tUNUMBER
|
||
{ if (time_overflow ($1.value)) YYABORT;
|
||
$$.tv_sec = $1.value; $$.tv_nsec = 0; }
|
||
;
|
||
|
||
number:
|
||
tUNUMBER
|
||
{ digits_to_date_time (pc, $1); }
|
||
;
|
||
|
||
hybrid:
|
||
tUNUMBER relunit_snumber
|
||
{
|
||
/* Hybrid all-digit and relative offset, so that we accept e.g.,
|
||
"YYYYMMDD +N days" as well as "YYYYMMDD N days". */
|
||
digits_to_date_time (pc, $1);
|
||
if (! apply_relative_time (pc, $2, 1)) YYABORT;
|
||
}
|
||
;
|
||
|
||
o_colon_minutes:
|
||
/* empty */
|
||
{ $$ = -1; }
|
||
| ':' tUNUMBER
|
||
{ $$ = $2.value; }
|
||
;
|
||
|
||
%%
|
||
|
||
static table const meridian_table[] =
|
||
{
|
||
{ "AM", tMERIDIAN, MERam },
|
||
{ "A.M.", tMERIDIAN, MERam },
|
||
{ "PM", tMERIDIAN, MERpm },
|
||
{ "P.M.", tMERIDIAN, MERpm },
|
||
{ NULL, 0, 0 }
|
||
};
|
||
|
||
static table const dst_table[] =
|
||
{
|
||
{ "DST", tDST, 0 }
|
||
};
|
||
|
||
static table const month_and_day_table[] =
|
||
{
|
||
{ "JANUARY", tMONTH, 1 },
|
||
{ "FEBRUARY", tMONTH, 2 },
|
||
{ "MARCH", tMONTH, 3 },
|
||
{ "APRIL", tMONTH, 4 },
|
||
{ "MAY", tMONTH, 5 },
|
||
{ "JUNE", tMONTH, 6 },
|
||
{ "JULY", tMONTH, 7 },
|
||
{ "AUGUST", tMONTH, 8 },
|
||
{ "SEPTEMBER",tMONTH, 9 },
|
||
{ "SEPT", tMONTH, 9 },
|
||
{ "OCTOBER", tMONTH, 10 },
|
||
{ "NOVEMBER", tMONTH, 11 },
|
||
{ "DECEMBER", tMONTH, 12 },
|
||
{ "SUNDAY", tDAY, 0 },
|
||
{ "MONDAY", tDAY, 1 },
|
||
{ "TUESDAY", tDAY, 2 },
|
||
{ "TUES", tDAY, 2 },
|
||
{ "WEDNESDAY",tDAY, 3 },
|
||
{ "WEDNES", tDAY, 3 },
|
||
{ "THURSDAY", tDAY, 4 },
|
||
{ "THUR", tDAY, 4 },
|
||
{ "THURS", tDAY, 4 },
|
||
{ "FRIDAY", tDAY, 5 },
|
||
{ "SATURDAY", tDAY, 6 },
|
||
{ NULL, 0, 0 }
|
||
};
|
||
|
||
static table const time_units_table[] =
|
||
{
|
||
{ "YEAR", tYEAR_UNIT, 1 },
|
||
{ "MONTH", tMONTH_UNIT, 1 },
|
||
{ "FORTNIGHT",tDAY_UNIT, 14 },
|
||
{ "WEEK", tDAY_UNIT, 7 },
|
||
{ "DAY", tDAY_UNIT, 1 },
|
||
{ "HOUR", tHOUR_UNIT, 1 },
|
||
{ "MINUTE", tMINUTE_UNIT, 1 },
|
||
{ "MIN", tMINUTE_UNIT, 1 },
|
||
{ "SECOND", tSEC_UNIT, 1 },
|
||
{ "SEC", tSEC_UNIT, 1 },
|
||
{ NULL, 0, 0 }
|
||
};
|
||
|
||
/* Assorted relative-time words. */
|
||
static table const relative_time_table[] =
|
||
{
|
||
{ "TOMORROW", tDAY_SHIFT, 1 },
|
||
{ "YESTERDAY",tDAY_SHIFT, -1 },
|
||
{ "TODAY", tDAY_SHIFT, 0 },
|
||
{ "NOW", tDAY_SHIFT, 0 },
|
||
{ "LAST", tORDINAL, -1 },
|
||
{ "THIS", tORDINAL, 0 },
|
||
{ "NEXT", tORDINAL, 1 },
|
||
{ "FIRST", tORDINAL, 1 },
|
||
/*{ "SECOND", tORDINAL, 2 }, */
|
||
{ "THIRD", tORDINAL, 3 },
|
||
{ "FOURTH", tORDINAL, 4 },
|
||
{ "FIFTH", tORDINAL, 5 },
|
||
{ "SIXTH", tORDINAL, 6 },
|
||
{ "SEVENTH", tORDINAL, 7 },
|
||
{ "EIGHTH", tORDINAL, 8 },
|
||
{ "NINTH", tORDINAL, 9 },
|
||
{ "TENTH", tORDINAL, 10 },
|
||
{ "ELEVENTH", tORDINAL, 11 },
|
||
{ "TWELFTH", tORDINAL, 12 },
|
||
{ "AGO", tAGO, -1 },
|
||
{ "HENCE", tAGO, 1 },
|
||
{ NULL, 0, 0 }
|
||
};
|
||
|
||
/* The universal time zone table. These labels can be used even for
|
||
timestamps that would not otherwise be valid, e.g., GMT timestamps
|
||
oin London during summer. */
|
||
static table const universal_time_zone_table[] =
|
||
{
|
||
{ "GMT", tZONE, HOUR ( 0) }, /* Greenwich Mean */
|
||
{ "UT", tZONE, HOUR ( 0) }, /* Universal (Coordinated) */
|
||
{ "UTC", tZONE, HOUR ( 0) },
|
||
{ NULL, 0, 0 }
|
||
};
|
||
|
||
/* The time zone table. This table is necessarily incomplete, as time
|
||
zone abbreviations are ambiguous; e.g., Australians interpret "EST"
|
||
as Eastern time in Australia, not as US Eastern Standard Time.
|
||
You cannot rely on parse_datetime to handle arbitrary time zone
|
||
abbreviations; use numeric abbreviations like "-0500" instead. */
|
||
static table const time_zone_table[] =
|
||
{
|
||
{ "WET", tZONE, HOUR ( 0) }, /* Western European */
|
||
{ "WEST", tDAYZONE, HOUR ( 0) }, /* Western European Summer */
|
||
{ "BST", tDAYZONE, HOUR ( 0) }, /* British Summer */
|
||
{ "ART", tZONE, -HOUR ( 3) }, /* Argentina */
|
||
{ "BRT", tZONE, -HOUR ( 3) }, /* Brazil */
|
||
{ "BRST", tDAYZONE, -HOUR ( 3) }, /* Brazil Summer */
|
||
{ "NST", tZONE, -(HOUR ( 3) + 30 * 60) }, /* Newfoundland Standard */
|
||
{ "NDT", tDAYZONE,-(HOUR ( 3) + 30 * 60) }, /* Newfoundland Daylight */
|
||
{ "AST", tZONE, -HOUR ( 4) }, /* Atlantic Standard */
|
||
{ "ADT", tDAYZONE, -HOUR ( 4) }, /* Atlantic Daylight */
|
||
{ "CLT", tZONE, -HOUR ( 4) }, /* Chile */
|
||
{ "CLST", tDAYZONE, -HOUR ( 4) }, /* Chile Summer */
|
||
{ "EST", tZONE, -HOUR ( 5) }, /* Eastern Standard */
|
||
{ "EDT", tDAYZONE, -HOUR ( 5) }, /* Eastern Daylight */
|
||
{ "CST", tZONE, -HOUR ( 6) }, /* Central Standard */
|
||
{ "CDT", tDAYZONE, -HOUR ( 6) }, /* Central Daylight */
|
||
{ "MST", tZONE, -HOUR ( 7) }, /* Mountain Standard */
|
||
{ "MDT", tDAYZONE, -HOUR ( 7) }, /* Mountain Daylight */
|
||
{ "PST", tZONE, -HOUR ( 8) }, /* Pacific Standard */
|
||
{ "PDT", tDAYZONE, -HOUR ( 8) }, /* Pacific Daylight */
|
||
{ "AKST", tZONE, -HOUR ( 9) }, /* Alaska Standard */
|
||
{ "AKDT", tDAYZONE, -HOUR ( 9) }, /* Alaska Daylight */
|
||
{ "HST", tZONE, -HOUR (10) }, /* Hawaii Standard */
|
||
{ "HAST", tZONE, -HOUR (10) }, /* Hawaii-Aleutian Standard */
|
||
{ "HADT", tDAYZONE, -HOUR (10) }, /* Hawaii-Aleutian Daylight */
|
||
{ "SST", tZONE, -HOUR (12) }, /* Samoa Standard */
|
||
{ "WAT", tZONE, HOUR ( 1) }, /* West Africa */
|
||
{ "CET", tZONE, HOUR ( 1) }, /* Central European */
|
||
{ "CEST", tDAYZONE, HOUR ( 1) }, /* Central European Summer */
|
||
{ "MET", tZONE, HOUR ( 1) }, /* Middle European */
|
||
{ "MEZ", tZONE, HOUR ( 1) }, /* Middle European */
|
||
{ "MEST", tDAYZONE, HOUR ( 1) }, /* Middle European Summer */
|
||
{ "MESZ", tDAYZONE, HOUR ( 1) }, /* Middle European Summer */
|
||
{ "EET", tZONE, HOUR ( 2) }, /* Eastern European */
|
||
{ "EEST", tDAYZONE, HOUR ( 2) }, /* Eastern European Summer */
|
||
{ "CAT", tZONE, HOUR ( 2) }, /* Central Africa */
|
||
{ "SAST", tZONE, HOUR ( 2) }, /* South Africa Standard */
|
||
{ "EAT", tZONE, HOUR ( 3) }, /* East Africa */
|
||
{ "MSK", tZONE, HOUR ( 3) }, /* Moscow */
|
||
{ "MSD", tDAYZONE, HOUR ( 3) }, /* Moscow Daylight */
|
||
{ "IST", tZONE, (HOUR ( 5) + 30 * 60) }, /* India Standard */
|
||
{ "SGT", tZONE, HOUR ( 8) }, /* Singapore */
|
||
{ "KST", tZONE, HOUR ( 9) }, /* Korea Standard */
|
||
{ "JST", tZONE, HOUR ( 9) }, /* Japan Standard */
|
||
{ "GST", tZONE, HOUR (10) }, /* Guam Standard */
|
||
{ "NZST", tZONE, HOUR (12) }, /* New Zealand Standard */
|
||
{ "NZDT", tDAYZONE, HOUR (12) }, /* New Zealand Daylight */
|
||
{ NULL, 0, 0 }
|
||
};
|
||
|
||
/* Military time zone table.
|
||
|
||
RFC 822 got these backwards, but RFC 5322 makes the incorrect
|
||
treatment optional, so do them the right way here.
|
||
|
||
Note 'T' is a special case, as it is used as the separator in ISO
|
||
8601 date and time of day representation. */
|
||
static table const military_table[] =
|
||
{
|
||
{ "A", tZONE, HOUR ( 1) },
|
||
{ "B", tZONE, HOUR ( 2) },
|
||
{ "C", tZONE, HOUR ( 3) },
|
||
{ "D", tZONE, HOUR ( 4) },
|
||
{ "E", tZONE, HOUR ( 5) },
|
||
{ "F", tZONE, HOUR ( 6) },
|
||
{ "G", tZONE, HOUR ( 7) },
|
||
{ "H", tZONE, HOUR ( 8) },
|
||
{ "I", tZONE, HOUR ( 9) },
|
||
{ "K", tZONE, HOUR (10) },
|
||
{ "L", tZONE, HOUR (11) },
|
||
{ "M", tZONE, HOUR (12) },
|
||
{ "N", tZONE, -HOUR ( 1) },
|
||
{ "O", tZONE, -HOUR ( 2) },
|
||
{ "P", tZONE, -HOUR ( 3) },
|
||
{ "Q", tZONE, -HOUR ( 4) },
|
||
{ "R", tZONE, -HOUR ( 5) },
|
||
{ "S", tZONE, -HOUR ( 6) },
|
||
{ "T", 'T', 0 },
|
||
{ "U", tZONE, -HOUR ( 8) },
|
||
{ "V", tZONE, -HOUR ( 9) },
|
||
{ "W", tZONE, -HOUR (10) },
|
||
{ "X", tZONE, -HOUR (11) },
|
||
{ "Y", tZONE, -HOUR (12) },
|
||
{ "Z", tZONE, HOUR ( 0) },
|
||
{ NULL, 0, 0 }
|
||
};
|
||
|
||
|
||
|
||
/* Convert a time zone expressed as HH:MM into an integer count of
|
||
seconds. If MM is negative, then S is of the form HHMM and needs
|
||
to be picked apart; otherwise, S is of the form HH. As specified in
|
||
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_03, allow
|
||
only valid TZ range, and consider first two digits as hours, if no
|
||
minutes specified. Return true if successful. */
|
||
|
||
static bool
|
||
time_zone_hhmm (parser_control *pc, textint s, intmax_t mm)
|
||
{
|
||
intmax_t n_minutes;
|
||
bool overflow = false;
|
||
|
||
/* If the length of S is 1 or 2 and no minutes are specified,
|
||
interpret it as a number of hours. */
|
||
if (s.digits <= 2 && mm < 0)
|
||
s.value *= 100;
|
||
|
||
if (mm < 0)
|
||
n_minutes = (s.value / 100) * 60 + s.value % 100;
|
||
else
|
||
{
|
||
overflow |= INT_MULTIPLY_WRAPV (s.value, 60, &n_minutes);
|
||
overflow |= (s.negative
|
||
? INT_SUBTRACT_WRAPV (n_minutes, mm, &n_minutes)
|
||
: INT_ADD_WRAPV (n_minutes, mm, &n_minutes));
|
||
}
|
||
|
||
if (overflow || ! (-24 * 60 <= n_minutes && n_minutes <= 24 * 60))
|
||
return false;
|
||
pc->time_zone = n_minutes * 60;
|
||
return true;
|
||
}
|
||
|
||
static int
|
||
to_hour (intmax_t hours, int meridian)
|
||
{
|
||
switch (meridian)
|
||
{
|
||
default: /* Pacify GCC. */
|
||
case MER24:
|
||
return 0 <= hours && hours < 24 ? hours : -1;
|
||
case MERam:
|
||
return 0 < hours && hours < 12 ? hours : hours == 12 ? 0 : -1;
|
||
case MERpm:
|
||
return 0 < hours && hours < 12 ? hours + 12 : hours == 12 ? 12 : -1;
|
||
}
|
||
}
|
||
|
||
enum { TM_YEAR_BASE = 1900 };
|
||
enum { TM_YEAR_BUFSIZE = INT_BUFSIZE_BOUND (int) + 1 };
|
||
|
||
/* Convert TM_YEAR, a year minus 1900, to a string that is numerically
|
||
correct even if subtracting 1900 would overflow. */
|
||
|
||
static char const *
|
||
tm_year_str (int tm_year, char buf[TM_YEAR_BUFSIZE])
|
||
{
|
||
verify (TM_YEAR_BASE % 100 == 0);
|
||
sprintf (buf, &"-%02d%02d"[-TM_YEAR_BASE <= tm_year],
|
||
abs (tm_year / 100 + TM_YEAR_BASE / 100),
|
||
abs (tm_year % 100));
|
||
return buf;
|
||
}
|
||
|
||
/* Convert a text year number to a year minus 1900, working correctly
|
||
even if the input is in the range INT_MAX .. INT_MAX + 1900 - 1. */
|
||
|
||
static bool
|
||
to_tm_year (textint textyear, bool debug, int *tm_year)
|
||
{
|
||
intmax_t year = textyear.value;
|
||
|
||
/* XPG4 suggests that years 00-68 map to 2000-2068, and
|
||
years 69-99 map to 1969-1999. */
|
||
if (0 <= year && textyear.digits == 2)
|
||
{
|
||
year += year < 69 ? 2000 : 1900;
|
||
if (debug)
|
||
dbg_printf (_("warning: adjusting year value %"PRIdMAX
|
||
" to %"PRIdMAX"\n"),
|
||
textyear.value, year);
|
||
}
|
||
|
||
if (year < 0
|
||
? INT_SUBTRACT_WRAPV (-TM_YEAR_BASE, year, tm_year)
|
||
: INT_SUBTRACT_WRAPV (year, TM_YEAR_BASE, tm_year))
|
||
{
|
||
if (debug)
|
||
dbg_printf (_("error: out-of-range year %"PRIdMAX"\n"), year);
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static table const * _GL_ATTRIBUTE_PURE
|
||
lookup_zone (parser_control const *pc, char const *name)
|
||
{
|
||
table const *tp;
|
||
|
||
for (tp = universal_time_zone_table; tp->name; tp++)
|
||
if (strcmp (name, tp->name) == 0)
|
||
return tp;
|
||
|
||
/* Try local zone abbreviations before those in time_zone_table, as
|
||
the local ones are more likely to be right. */
|
||
for (tp = pc->local_time_zone_table; tp->name; tp++)
|
||
if (strcmp (name, tp->name) == 0)
|
||
return tp;
|
||
|
||
for (tp = time_zone_table; tp->name; tp++)
|
||
if (strcmp (name, tp->name) == 0)
|
||
return tp;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
#if ! HAVE_TM_GMTOFF
|
||
/* Yield the difference between *A and *B,
|
||
measured in seconds, ignoring leap seconds.
|
||
The body of this function is taken directly from the GNU C Library;
|
||
see strftime.c. */
|
||
static int
|
||
tm_diff (const struct tm *a, const struct tm *b)
|
||
{
|
||
/* Compute intervening leap days correctly even if year is negative.
|
||
Take care to avoid int overflow in leap day calculations,
|
||
but it's OK to assume that A and B are close to each other. */
|
||
int a4 = SHR (a->tm_year, 2) + SHR (TM_YEAR_BASE, 2) - ! (a->tm_year & 3);
|
||
int b4 = SHR (b->tm_year, 2) + SHR (TM_YEAR_BASE, 2) - ! (b->tm_year & 3);
|
||
int a100 = a4 / 25 - (a4 % 25 < 0);
|
||
int b100 = b4 / 25 - (b4 % 25 < 0);
|
||
int a400 = SHR (a100, 2);
|
||
int b400 = SHR (b100, 2);
|
||
int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
|
||
int years = a->tm_year - b->tm_year;
|
||
int days = (365 * years + intervening_leap_days
|
||
+ (a->tm_yday - b->tm_yday));
|
||
return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
|
||
+ (a->tm_min - b->tm_min))
|
||
+ (a->tm_sec - b->tm_sec));
|
||
}
|
||
#endif /* ! HAVE_TM_GMTOFF */
|
||
|
||
static table const *
|
||
lookup_word (parser_control const *pc, char *word)
|
||
{
|
||
char *p;
|
||
char *q;
|
||
idx_t wordlen;
|
||
table const *tp;
|
||
bool period_found;
|
||
bool abbrev;
|
||
|
||
/* Make it uppercase. */
|
||
for (p = word; *p; p++)
|
||
*p = c_toupper (to_uchar (*p));
|
||
|
||
for (tp = meridian_table; tp->name; tp++)
|
||
if (strcmp (word, tp->name) == 0)
|
||
return tp;
|
||
|
||
/* See if we have an abbreviation for a month. */
|
||
wordlen = strlen (word);
|
||
abbrev = wordlen == 3 || (wordlen == 4 && word[3] == '.');
|
||
|
||
for (tp = month_and_day_table; tp->name; tp++)
|
||
if ((abbrev ? strncmp (word, tp->name, 3) : strcmp (word, tp->name)) == 0)
|
||
return tp;
|
||
|
||
if ((tp = lookup_zone (pc, word)))
|
||
return tp;
|
||
|
||
if (strcmp (word, dst_table[0].name) == 0)
|
||
return dst_table;
|
||
|
||
for (tp = time_units_table; tp->name; tp++)
|
||
if (strcmp (word, tp->name) == 0)
|
||
return tp;
|
||
|
||
/* Strip off any plural and try the units table again. */
|
||
if (word[wordlen - 1] == 'S')
|
||
{
|
||
word[wordlen - 1] = '\0';
|
||
for (tp = time_units_table; tp->name; tp++)
|
||
if (strcmp (word, tp->name) == 0)
|
||
return tp;
|
||
word[wordlen - 1] = 'S'; /* For "this" in relative_time_table. */
|
||
}
|
||
|
||
for (tp = relative_time_table; tp->name; tp++)
|
||
if (strcmp (word, tp->name) == 0)
|
||
return tp;
|
||
|
||
/* Military time zones. */
|
||
if (wordlen == 1)
|
||
for (tp = military_table; tp->name; tp++)
|
||
if (word[0] == tp->name[0])
|
||
return tp;
|
||
|
||
/* Drop out any periods and try the time zone table again. */
|
||
for (period_found = false, p = q = word; (*p = *q); q++)
|
||
if (*q == '.')
|
||
period_found = true;
|
||
else
|
||
p++;
|
||
if (period_found && (tp = lookup_zone (pc, word)))
|
||
return tp;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static int
|
||
yylex (union YYSTYPE *lvalp, parser_control *pc)
|
||
{
|
||
unsigned char c;
|
||
|
||
for (;;)
|
||
{
|
||
while (c = *pc->input, c_isspace (c))
|
||
pc->input++;
|
||
|
||
if (c_isdigit (c) || c == '-' || c == '+')
|
||
{
|
||
char const *p = pc->input;
|
||
int sign;
|
||
if (c == '-' || c == '+')
|
||
{
|
||
sign = c == '-' ? -1 : 1;
|
||
while (c = *(pc->input = ++p), c_isspace (c))
|
||
continue;
|
||
if (! c_isdigit (c))
|
||
/* skip the '-' sign */
|
||
continue;
|
||
}
|
||
else
|
||
sign = 0;
|
||
|
||
time_t value = 0;
|
||
do
|
||
{
|
||
if (INT_MULTIPLY_WRAPV (value, 10, &value))
|
||
return '?';
|
||
if (INT_ADD_WRAPV (value, sign < 0 ? '0' - c : c - '0', &value))
|
||
return '?';
|
||
c = *++p;
|
||
}
|
||
while (c_isdigit (c));
|
||
|
||
if ((c == '.' || c == ',') && c_isdigit (p[1]))
|
||
{
|
||
time_t s = value;
|
||
int digits;
|
||
|
||
/* Accumulate fraction, to ns precision. */
|
||
p++;
|
||
int ns = *p++ - '0';
|
||
for (digits = 2; digits <= LOG10_BILLION; digits++)
|
||
{
|
||
ns *= 10;
|
||
if (c_isdigit (*p))
|
||
ns += *p++ - '0';
|
||
}
|
||
|
||
/* Skip excess digits, truncating toward -Infinity. */
|
||
if (sign < 0)
|
||
for (; c_isdigit (*p); p++)
|
||
if (*p != '0')
|
||
{
|
||
ns++;
|
||
break;
|
||
}
|
||
while (c_isdigit (*p))
|
||
p++;
|
||
|
||
/* Adjust to the timespec convention, which is that
|
||
tv_nsec is always a positive offset even if tv_sec is
|
||
negative. */
|
||
if (sign < 0 && ns)
|
||
{
|
||
if (INT_SUBTRACT_WRAPV (s, 1, &s))
|
||
return '?';
|
||
ns = BILLION - ns;
|
||
}
|
||
|
||
lvalp->timespec.tv_sec = s;
|
||
lvalp->timespec.tv_nsec = ns;
|
||
pc->input = p;
|
||
return sign ? tSDECIMAL_NUMBER : tUDECIMAL_NUMBER;
|
||
}
|
||
else
|
||
{
|
||
lvalp->textintval.negative = sign < 0;
|
||
lvalp->textintval.value = value;
|
||
lvalp->textintval.digits = p - pc->input;
|
||
pc->input = p;
|
||
return sign ? tSNUMBER : tUNUMBER;
|
||
}
|
||
}
|
||
|
||
if (c_isalpha (c))
|
||
{
|
||
char buff[20];
|
||
char *p = buff;
|
||
table const *tp;
|
||
|
||
do
|
||
{
|
||
if (p < buff + sizeof buff - 1)
|
||
*p++ = c;
|
||
c = *++pc->input;
|
||
}
|
||
while (c_isalpha (c) || c == '.');
|
||
|
||
*p = '\0';
|
||
tp = lookup_word (pc, buff);
|
||
if (! tp)
|
||
{
|
||
if (debugging (pc))
|
||
dbg_printf (_("error: unknown word '%s'\n"), buff);
|
||
return '?';
|
||
}
|
||
lvalp->intval = tp->value;
|
||
return tp->type;
|
||
}
|
||
|
||
if (c != '(')
|
||
return to_uchar (*pc->input++);
|
||
|
||
idx_t count = 0;
|
||
do
|
||
{
|
||
c = *pc->input++;
|
||
if (c == '\0')
|
||
return c;
|
||
if (c == '(')
|
||
count++;
|
||
else if (c == ')')
|
||
count--;
|
||
}
|
||
while (count != 0);
|
||
}
|
||
}
|
||
|
||
/* Do nothing if the parser reports an error. */
|
||
static int
|
||
yyerror (_GL_UNUSED parser_control const *pc,
|
||
_GL_UNUSED char const *s)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* If *TM0 is the old and *TM1 is the new value of a struct tm after
|
||
passing it to mktime_z, return true if it's OK. It's not OK if
|
||
mktime failed or if *TM0 has out-of-range mainline members.
|
||
The caller should set TM1->tm_wday to -1 before calling mktime,
|
||
as a negative tm_wday is how mktime failure is inferred. */
|
||
|
||
static bool
|
||
mktime_ok (struct tm const *tm0, struct tm const *tm1)
|
||
{
|
||
if (tm1->tm_wday < 0)
|
||
return false;
|
||
|
||
return ! ((tm0->tm_sec ^ tm1->tm_sec)
|
||
| (tm0->tm_min ^ tm1->tm_min)
|
||
| (tm0->tm_hour ^ tm1->tm_hour)
|
||
| (tm0->tm_mday ^ tm1->tm_mday)
|
||
| (tm0->tm_mon ^ tm1->tm_mon)
|
||
| (tm0->tm_year ^ tm1->tm_year));
|
||
}
|
||
|
||
/* Debugging: format a 'struct tm' into a buffer, taking the parser's
|
||
timezone information into account (if pc != NULL). */
|
||
static char const *
|
||
debug_strfdatetime (struct tm const *tm, parser_control const *pc,
|
||
char *buf, int n)
|
||
{
|
||
/* TODO:
|
||
1. find an optimal way to print date string in a clear and unambiguous
|
||
format. Currently, always add '(Y-M-D)' prefix.
|
||
Consider '2016y01m10d' or 'year(2016) month(01) day(10)'.
|
||
|
||
If the user needs debug printing, it means he/she already having
|
||
issues with the parsing - better to avoid formats that could
|
||
be mis-interpreted (e.g., just YYYY-MM-DD).
|
||
|
||
2. Can strftime be used instead?
|
||
depends if it is portable and can print invalid dates on all systems.
|
||
|
||
3. Print timezone information ?
|
||
|
||
4. Print DST information ?
|
||
|
||
5. Print nanosecond information ?
|
||
|
||
NOTE:
|
||
Printed date/time values might not be valid, e.g., '2016-02-31'
|
||
or '2016-19-2016' . These are the values as parsed from the user
|
||
string, before validation.
|
||
*/
|
||
int m = nstrftime (buf, n, "(Y-M-D) %Y-%m-%d %H:%M:%S", tm, 0, 0);
|
||
|
||
/* If parser_control information was provided (for timezone),
|
||
and there's enough space in the buffer, add timezone info. */
|
||
if (pc && m < n && pc->zones_seen)
|
||
{
|
||
int tz = pc->time_zone;
|
||
|
||
/* Account for DST if tLOCAL_ZONE was seen. */
|
||
if (pc->local_zones_seen && !pc->zones_seen && 0 < pc->local_isdst)
|
||
tz += 60 * 60;
|
||
|
||
char time_zone_buf[TIME_ZONE_BUFSIZE];
|
||
snprintf (&buf[m], n - m, " TZ=%s", time_zone_str (tz, time_zone_buf));
|
||
}
|
||
return buf;
|
||
}
|
||
|
||
static char const *
|
||
debug_strfdate (struct tm const *tm, char *buf, int n)
|
||
{
|
||
char tm_year_buf[TM_YEAR_BUFSIZE];
|
||
snprintf (buf, n, "(Y-M-D) %s-%02d-%02d",
|
||
tm_year_str (tm->tm_year, tm_year_buf),
|
||
tm->tm_mon + 1, tm->tm_mday);
|
||
return buf;
|
||
}
|
||
|
||
static char const *
|
||
debug_strftime (struct tm const *tm, char *buf, int n)
|
||
{
|
||
snprintf (buf, n, "%02d:%02d:%02d", tm->tm_hour, tm->tm_min, tm->tm_sec);
|
||
return buf;
|
||
}
|
||
|
||
/* If mktime_ok failed, display the failed time values,
|
||
and provide possible hints. Example output:
|
||
|
||
date: error: invalid date/time value:
|
||
date: user provided time: '(Y-M-D) 2006-04-02 02:45:00'
|
||
date: normalized time: '(Y-M-D) 2006-04-02 03:45:00'
|
||
date: __
|
||
date: possible reasons:
|
||
date: non-existing due to daylight-saving time;
|
||
date: numeric values overflow;
|
||
date: missing timezone;
|
||
*/
|
||
static void
|
||
debug_mktime_not_ok (struct tm const *tm0, struct tm const *tm1,
|
||
parser_control const *pc, bool time_zone_seen)
|
||
{
|
||
/* TODO: handle t == -1 (as in 'mktime_ok'). */
|
||
char tmp[DBGBUFSIZE];
|
||
int i;
|
||
const bool eq_sec = (tm0->tm_sec == tm1->tm_sec);
|
||
const bool eq_min = (tm0->tm_min == tm1->tm_min);
|
||
const bool eq_hour = (tm0->tm_hour == tm1->tm_hour);
|
||
const bool eq_mday = (tm0->tm_mday == tm1->tm_mday);
|
||
const bool eq_month = (tm0->tm_mon == tm1->tm_mon);
|
||
const bool eq_year = (tm0->tm_year == tm1->tm_year);
|
||
|
||
const bool dst_shift = eq_sec && eq_min && !eq_hour
|
||
&& eq_mday && eq_month && eq_year;
|
||
|
||
if (!debugging (pc))
|
||
return;
|
||
|
||
dbg_printf (_("error: invalid date/time value:\n"));
|
||
dbg_printf (_(" user provided time: '%s'\n"),
|
||
debug_strfdatetime (tm0, pc, tmp, sizeof tmp));
|
||
dbg_printf (_(" normalized time: '%s'\n"),
|
||
debug_strfdatetime (tm1, pc, tmp, sizeof tmp));
|
||
/* The format must be aligned with debug_strfdatetime and the two
|
||
DEBUG statements above. This string is not translated. */
|
||
i = snprintf (tmp, sizeof tmp,
|
||
" %4s %2s %2s %2s %2s %2s",
|
||
eq_year ? "" : "----",
|
||
eq_month ? "" : "--",
|
||
eq_mday ? "" : "--",
|
||
eq_hour ? "" : "--",
|
||
eq_min ? "" : "--",
|
||
eq_sec ? "" : "--");
|
||
/* Trim trailing whitespace. */
|
||
if (0 <= i)
|
||
{
|
||
if (sizeof tmp - 1 < i)
|
||
i = sizeof tmp - 1;
|
||
while (0 < i && tmp[i - 1] == ' ')
|
||
--i;
|
||
tmp[i] = '\0';
|
||
}
|
||
dbg_printf ("%s\n", tmp);
|
||
|
||
dbg_printf (_(" possible reasons:\n"));
|
||
if (dst_shift)
|
||
dbg_printf (_(" non-existing due to daylight-saving time;\n"));
|
||
if (!eq_mday && !eq_month)
|
||
dbg_printf (_(" invalid day/month combination;\n"));
|
||
dbg_printf (_(" numeric values overflow;\n"));
|
||
dbg_printf (" %s\n", (time_zone_seen ? _("incorrect timezone")
|
||
: _("missing timezone")));
|
||
}
|
||
|
||
/* Parse a date/time string, storing the resulting time value into *RESULT.
|
||
The string itself is pointed to by P. Return true if successful.
|
||
P can be an incomplete or relative time specification; if so, use
|
||
*NOW as the basis for the returned time. Default to timezone
|
||
TZDEFAULT, which corresponds to tzalloc (TZSTRING). */
|
||
static bool
|
||
parse_datetime_body (struct timespec *result, char const *p,
|
||
struct timespec const *now, unsigned int flags,
|
||
timezone_t tzdefault, char const *tzstring)
|
||
{
|
||
struct tm tm;
|
||
struct tm tm0;
|
||
char time_zone_buf[TIME_ZONE_BUFSIZE];
|
||
char dbg_tm[DBGBUFSIZE];
|
||
bool ok = false;
|
||
char const *input_sentinel = p + strlen (p);
|
||
char *tz1alloc = NULL;
|
||
|
||
/* A reasonable upper bound for the size of ordinary TZ strings.
|
||
Use heap allocation if TZ's length exceeds this. */
|
||
enum { TZBUFSIZE = 100 };
|
||
char tz1buf[TZBUFSIZE];
|
||
|
||
struct timespec gettime_buffer;
|
||
if (! now)
|
||
{
|
||
gettime (&gettime_buffer);
|
||
now = &gettime_buffer;
|
||
}
|
||
|
||
time_t Start = now->tv_sec;
|
||
int Start_ns = now->tv_nsec;
|
||
|
||
unsigned char c;
|
||
while (c = *p, c_isspace (c))
|
||
p++;
|
||
|
||
timezone_t tz = tzdefault;
|
||
|
||
/* Store a local copy prior to first "goto". Without this, a prior use
|
||
below of RELATIVE_TIME_0 on the RHS might translate to an assignment-
|
||
to-temporary, which would trigger a -Wjump-misses-init warning. */
|
||
const relative_time rel_time_0 = RELATIVE_TIME_0;
|
||
|
||
if (strncmp (p, "TZ=\"", 4) == 0)
|
||
{
|
||
char const *tzbase = p + 4;
|
||
idx_t tzsize = 1;
|
||
char const *s;
|
||
|
||
for (s = tzbase; *s; s++, tzsize++)
|
||
if (*s == '\\')
|
||
{
|
||
s++;
|
||
if (! (*s == '\\' || *s == '"'))
|
||
break;
|
||
}
|
||
else if (*s == '"')
|
||
{
|
||
timezone_t tz1;
|
||
char *tz1string = tz1buf;
|
||
char *z;
|
||
if (TZBUFSIZE < tzsize)
|
||
{
|
||
tz1alloc = malloc (tzsize);
|
||
if (!tz1alloc)
|
||
goto fail;
|
||
tz1string = tz1alloc;
|
||
}
|
||
z = tz1string;
|
||
for (s = tzbase; *s != '"'; s++)
|
||
*z++ = *(s += *s == '\\');
|
||
*z = '\0';
|
||
tz1 = tzalloc (tz1string);
|
||
if (!tz1)
|
||
goto fail;
|
||
tz = tz1;
|
||
tzstring = tz1string;
|
||
|
||
p = s + 1;
|
||
while (c = *p, c_isspace (c))
|
||
p++;
|
||
|
||
break;
|
||
}
|
||
}
|
||
|
||
struct tm tmp;
|
||
if (! localtime_rz (tz, &now->tv_sec, &tmp))
|
||
goto fail;
|
||
|
||
/* As documented, be careful to treat the empty string just like
|
||
a date string of "0". Without this, an empty string would be
|
||
declared invalid when parsed during a DST transition. */
|
||
if (*p == '\0')
|
||
p = "0";
|
||
|
||
parser_control pc;
|
||
pc.input = p;
|
||
#ifdef GNULIB_PARSE_DATETIME2
|
||
pc.parse_datetime_debug = (flags & PARSE_DATETIME_DEBUG) != 0;
|
||
#endif
|
||
if (INT_ADD_WRAPV (tmp.tm_year, TM_YEAR_BASE, &pc.year.value))
|
||
{
|
||
if (debugging (&pc))
|
||
dbg_printf (_("error: initial year out of range\n"));
|
||
goto fail;
|
||
}
|
||
pc.year.digits = 0;
|
||
pc.month = tmp.tm_mon + 1;
|
||
pc.day = tmp.tm_mday;
|
||
pc.hour = tmp.tm_hour;
|
||
pc.minutes = tmp.tm_min;
|
||
pc.seconds.tv_sec = tmp.tm_sec;
|
||
pc.seconds.tv_nsec = Start_ns;
|
||
tm.tm_isdst = tmp.tm_isdst;
|
||
|
||
pc.meridian = MER24;
|
||
pc.rel = rel_time_0;
|
||
pc.timespec_seen = false;
|
||
pc.rels_seen = false;
|
||
pc.dates_seen = 0;
|
||
pc.days_seen = 0;
|
||
pc.times_seen = 0;
|
||
pc.local_zones_seen = 0;
|
||
pc.dsts_seen = 0;
|
||
pc.zones_seen = 0;
|
||
pc.year_seen = false;
|
||
pc.debug_dates_seen = false;
|
||
pc.debug_days_seen = false;
|
||
pc.debug_times_seen = false;
|
||
pc.debug_local_zones_seen = false;
|
||
pc.debug_zones_seen = false;
|
||
pc.debug_year_seen = false;
|
||
pc.debug_ordinal_day_seen = false;
|
||
|
||
#if HAVE_STRUCT_TM_TM_ZONE
|
||
pc.local_time_zone_table[0].name = tmp.tm_zone;
|
||
pc.local_time_zone_table[0].type = tLOCAL_ZONE;
|
||
pc.local_time_zone_table[0].value = tmp.tm_isdst;
|
||
pc.local_time_zone_table[1].name = NULL;
|
||
|
||
/* Probe the names used in the next three calendar quarters, looking
|
||
for a tm_isdst different from the one we already have. */
|
||
{
|
||
int quarter;
|
||
for (quarter = 1; quarter <= 3; quarter++)
|
||
{
|
||
time_t probe;
|
||
if (INT_ADD_WRAPV (Start, quarter * (90 * 24 * 60 * 60), &probe))
|
||
break;
|
||
struct tm probe_tm;
|
||
if (localtime_rz (tz, &probe, &probe_tm) && probe_tm.tm_zone
|
||
&& probe_tm.tm_isdst != pc.local_time_zone_table[0].value)
|
||
{
|
||
{
|
||
pc.local_time_zone_table[1].name = probe_tm.tm_zone;
|
||
pc.local_time_zone_table[1].type = tLOCAL_ZONE;
|
||
pc.local_time_zone_table[1].value = probe_tm.tm_isdst;
|
||
pc.local_time_zone_table[2].name = NULL;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
#else
|
||
#if HAVE_TZNAME
|
||
{
|
||
# if !HAVE_DECL_TZNAME
|
||
extern char *tzname[];
|
||
# endif
|
||
int i;
|
||
for (i = 0; i < 2; i++)
|
||
{
|
||
pc.local_time_zone_table[i].name = tzname[i];
|
||
pc.local_time_zone_table[i].type = tLOCAL_ZONE;
|
||
pc.local_time_zone_table[i].value = i;
|
||
}
|
||
pc.local_time_zone_table[i].name = NULL;
|
||
}
|
||
#else
|
||
pc.local_time_zone_table[0].name = NULL;
|
||
#endif
|
||
#endif
|
||
|
||
if (pc.local_time_zone_table[0].name && pc.local_time_zone_table[1].name
|
||
&& ! strcmp (pc.local_time_zone_table[0].name,
|
||
pc.local_time_zone_table[1].name))
|
||
{
|
||
/* This locale uses the same abbreviation for standard and
|
||
daylight times. So if we see that abbreviation, we don't
|
||
know whether it's daylight time. */
|
||
pc.local_time_zone_table[0].value = -1;
|
||
pc.local_time_zone_table[1].name = NULL;
|
||
}
|
||
|
||
if (yyparse (&pc) != 0)
|
||
{
|
||
if (debugging (&pc))
|
||
dbg_printf ((input_sentinel <= pc.input
|
||
? _("error: parsing failed\n")
|
||
: _("error: parsing failed, stopped at '%s'\n")),
|
||
pc.input);
|
||
goto fail;
|
||
}
|
||
|
||
|
||
/* Determine effective timezone source. */
|
||
|
||
if (debugging (&pc))
|
||
{
|
||
dbg_printf (_("input timezone: "));
|
||
|
||
if (pc.timespec_seen)
|
||
fprintf (stderr, _("'@timespec' - always UTC"));
|
||
else if (pc.zones_seen)
|
||
fprintf (stderr, _("parsed date/time string"));
|
||
else if (tzstring)
|
||
{
|
||
if (tz != tzdefault)
|
||
fprintf (stderr, _("TZ=\"%s\" in date string"), tzstring);
|
||
else if (STREQ (tzstring, "UTC0"))
|
||
{
|
||
/* Special case: 'date -u' sets TZ="UTC0". */
|
||
fprintf (stderr, _("TZ=\"UTC0\" environment value or -u"));
|
||
}
|
||
else
|
||
fprintf (stderr, _("TZ=\"%s\" environment value"), tzstring);
|
||
}
|
||
else
|
||
fprintf (stderr, _("system default"));
|
||
|
||
/* Account for DST changes if tLOCAL_ZONE was seen.
|
||
local timezone only changes DST and is relative to the
|
||
default timezone.*/
|
||
if (pc.local_zones_seen && !pc.zones_seen && 0 < pc.local_isdst)
|
||
fprintf (stderr, ", dst");
|
||
|
||
if (pc.zones_seen)
|
||
fprintf (stderr, " (%s)", time_zone_str (pc.time_zone, time_zone_buf));
|
||
|
||
fputc ('\n', stderr);
|
||
}
|
||
|
||
if (pc.timespec_seen)
|
||
*result = pc.seconds;
|
||
else
|
||
{
|
||
if (1 < (pc.times_seen | pc.dates_seen | pc.days_seen | pc.dsts_seen
|
||
| (pc.local_zones_seen + pc.zones_seen)))
|
||
{
|
||
if (debugging (&pc))
|
||
{
|
||
if (pc.times_seen > 1)
|
||
dbg_printf ("error: seen multiple time parts\n");
|
||
if (pc.dates_seen > 1)
|
||
dbg_printf ("error: seen multiple date parts\n");
|
||
if (pc.days_seen > 1)
|
||
dbg_printf ("error: seen multiple days parts\n");
|
||
if (pc.dsts_seen > 1)
|
||
dbg_printf ("error: seen multiple daylight-saving parts\n");
|
||
if ((pc.local_zones_seen + pc.zones_seen) > 1)
|
||
dbg_printf ("error: seen multiple time-zone parts\n");
|
||
}
|
||
goto fail;
|
||
}
|
||
|
||
if (! to_tm_year (pc.year, debugging (&pc), &tm.tm_year)
|
||
|| INT_ADD_WRAPV (pc.month, -1, &tm.tm_mon)
|
||
|| INT_ADD_WRAPV (pc.day, 0, &tm.tm_mday))
|
||
{
|
||
if (debugging (&pc))
|
||
dbg_printf (_("error: year, month, or day overflow\n"));
|
||
goto fail;
|
||
}
|
||
if (pc.times_seen || (pc.rels_seen && ! pc.dates_seen && ! pc.days_seen))
|
||
{
|
||
tm.tm_hour = to_hour (pc.hour, pc.meridian);
|
||
if (tm.tm_hour < 0)
|
||
{
|
||
char const *mrd = (pc.meridian == MERam ? "am"
|
||
: pc.meridian == MERpm ?"pm" : "");
|
||
if (debugging (&pc))
|
||
dbg_printf (_("error: invalid hour %"PRIdMAX"%s\n"),
|
||
pc.hour, mrd);
|
||
goto fail;
|
||
}
|
||
tm.tm_min = pc.minutes;
|
||
tm.tm_sec = pc.seconds.tv_sec;
|
||
if (debugging (&pc))
|
||
dbg_printf ((pc.times_seen
|
||
? _("using specified time as starting value: '%s'\n")
|
||
: _("using current time as starting value: '%s'\n")),
|
||
debug_strftime (&tm, dbg_tm, sizeof dbg_tm));
|
||
}
|
||
else
|
||
{
|
||
tm.tm_hour = tm.tm_min = tm.tm_sec = 0;
|
||
pc.seconds.tv_nsec = 0;
|
||
if (debugging (&pc))
|
||
dbg_printf ("warning: using midnight as starting time: 00:00:00\n");
|
||
}
|
||
|
||
/* Let mktime deduce tm_isdst if we have an absolute timestamp. */
|
||
if (pc.dates_seen | pc.days_seen | pc.times_seen)
|
||
tm.tm_isdst = -1;
|
||
|
||
/* But if the input explicitly specifies local time with or without
|
||
DST, give mktime that information. */
|
||
if (pc.local_zones_seen)
|
||
tm.tm_isdst = pc.local_isdst;
|
||
|
||
tm0.tm_sec = tm.tm_sec;
|
||
tm0.tm_min = tm.tm_min;
|
||
tm0.tm_hour = tm.tm_hour;
|
||
tm0.tm_mday = tm.tm_mday;
|
||
tm0.tm_mon = tm.tm_mon;
|
||
tm0.tm_year = tm.tm_year;
|
||
tm0.tm_isdst = tm.tm_isdst;
|
||
tm.tm_wday = -1;
|
||
|
||
Start = mktime_z (tz, &tm);
|
||
|
||
if (! mktime_ok (&tm0, &tm))
|
||
{
|
||
bool repaired = false;
|
||
bool time_zone_seen = pc.zones_seen != 0;
|
||
if (time_zone_seen)
|
||
{
|
||
/* Guard against falsely reporting errors near the time_t
|
||
boundaries when parsing times in other time zones. For
|
||
example, suppose the input string "1969-12-31 23:00:00 -0100",
|
||
the current time zone is 8 hours ahead of UTC, and the min
|
||
time_t value is 1970-01-01 00:00:00 UTC. Then the min
|
||
localtime value is 1970-01-01 08:00:00, and mktime will
|
||
therefore fail on 1969-12-31 23:00:00. To work around the
|
||
problem, set the time zone to 1 hour behind UTC temporarily
|
||
by setting TZ="XXX1:00" and try mktime again. */
|
||
|
||
char tz2buf[sizeof "XXX" - 1 + TIME_ZONE_BUFSIZE];
|
||
tz2buf[0] = tz2buf[1] = tz2buf[2] = 'X';
|
||
time_zone_str (pc.time_zone, &tz2buf[3]);
|
||
timezone_t tz2 = tzalloc (tz2buf);
|
||
if (!tz2)
|
||
{
|
||
if (debugging (&pc))
|
||
dbg_printf (_("error: tzalloc (\"%s\") failed\n"), tz2buf);
|
||
goto fail;
|
||
}
|
||
tm.tm_sec = tm0.tm_sec;
|
||
tm.tm_min = tm0.tm_min;
|
||
tm.tm_hour = tm0.tm_hour;
|
||
tm.tm_mday = tm0.tm_mday;
|
||
tm.tm_mon = tm0.tm_mon;
|
||
tm.tm_year = tm0.tm_year;
|
||
tm.tm_isdst = tm0.tm_isdst;
|
||
tm.tm_wday = -1;
|
||
Start = mktime_z (tz2, &tm);
|
||
repaired = mktime_ok (&tm0, &tm);
|
||
tzfree (tz2);
|
||
}
|
||
|
||
if (! repaired)
|
||
{
|
||
debug_mktime_not_ok (&tm0, &tm, &pc, time_zone_seen);
|
||
goto fail;
|
||
}
|
||
}
|
||
|
||
char dbg_ord[DBGBUFSIZE];
|
||
|
||
if (pc.days_seen && ! pc.dates_seen)
|
||
{
|
||
intmax_t dayincr;
|
||
tm.tm_yday = -1;
|
||
if (! (INT_MULTIPLY_WRAPV ((pc.day_ordinal
|
||
- (0 < pc.day_ordinal
|
||
&& tm.tm_wday != pc.day_number)),
|
||
7, &dayincr)
|
||
|| INT_ADD_WRAPV ((pc.day_number - tm.tm_wday + 7) % 7,
|
||
dayincr, &dayincr)
|
||
|| INT_ADD_WRAPV (dayincr, tm.tm_mday, &tm.tm_mday)))
|
||
{
|
||
tm.tm_isdst = -1;
|
||
Start = mktime_z (tz, &tm);
|
||
}
|
||
|
||
if (tm.tm_yday < 0)
|
||
{
|
||
if (debugging (&pc))
|
||
dbg_printf (_("error: day '%s' "
|
||
"(day ordinal=%"PRIdMAX" number=%d) "
|
||
"resulted in an invalid date: '%s'\n"),
|
||
str_days (&pc, dbg_ord, sizeof dbg_ord),
|
||
pc.day_ordinal, pc.day_number,
|
||
debug_strfdatetime (&tm, &pc, dbg_tm,
|
||
sizeof dbg_tm));
|
||
goto fail;
|
||
}
|
||
|
||
if (debugging (&pc))
|
||
dbg_printf (_("new start date: '%s' is '%s'\n"),
|
||
str_days (&pc, dbg_ord, sizeof dbg_ord),
|
||
debug_strfdatetime (&tm, &pc, dbg_tm, sizeof dbg_tm));
|
||
|
||
}
|
||
|
||
if (debugging (&pc))
|
||
{
|
||
if (!pc.dates_seen && !pc.days_seen)
|
||
dbg_printf (_("using current date as starting value: '%s'\n"),
|
||
debug_strfdate (&tm, dbg_tm, sizeof dbg_tm));
|
||
|
||
if (pc.days_seen && pc.dates_seen)
|
||
dbg_printf (_("warning: day (%s) ignored when explicit dates "
|
||
"are given\n"),
|
||
str_days (&pc, dbg_ord, sizeof dbg_ord));
|
||
|
||
dbg_printf (_("starting date/time: '%s'\n"),
|
||
debug_strfdatetime (&tm, &pc, dbg_tm, sizeof dbg_tm));
|
||
}
|
||
|
||
/* Add relative date. */
|
||
if (pc.rel.year | pc.rel.month | pc.rel.day)
|
||
{
|
||
if (debugging (&pc))
|
||
{
|
||
if ((pc.rel.year != 0 || pc.rel.month != 0) && tm.tm_mday != 15)
|
||
dbg_printf (_("warning: when adding relative months/years, "
|
||
"it is recommended to specify the 15th of the "
|
||
"months\n"));
|
||
|
||
if (pc.rel.day != 0 && tm.tm_hour != 12)
|
||
dbg_printf (_("warning: when adding relative days, "
|
||
"it is recommended to specify noon\n"));
|
||
}
|
||
|
||
int year, month, day;
|
||
if (INT_ADD_WRAPV (tm.tm_year, pc.rel.year, &year)
|
||
|| INT_ADD_WRAPV (tm.tm_mon, pc.rel.month, &month)
|
||
|| INT_ADD_WRAPV (tm.tm_mday, pc.rel.day, &day))
|
||
{
|
||
if (debugging (&pc))
|
||
dbg_printf (_("error: %s:%d\n"), __FILE__, __LINE__);
|
||
goto fail;
|
||
}
|
||
tm.tm_year = year;
|
||
tm.tm_mon = month;
|
||
tm.tm_mday = day;
|
||
tm.tm_hour = tm0.tm_hour;
|
||
tm.tm_min = tm0.tm_min;
|
||
tm.tm_sec = tm0.tm_sec;
|
||
tm.tm_isdst = tm0.tm_isdst;
|
||
tm.tm_wday = -1;
|
||
Start = mktime_z (tz, &tm);
|
||
if (tm.tm_wday < 0)
|
||
{
|
||
if (debugging (&pc))
|
||
dbg_printf (_("error: adding relative date resulted "
|
||
"in an invalid date: '%s'\n"),
|
||
debug_strfdatetime (&tm, &pc, dbg_tm,
|
||
sizeof dbg_tm));
|
||
goto fail;
|
||
}
|
||
|
||
if (debugging (&pc))
|
||
{
|
||
dbg_printf (_("after date adjustment "
|
||
"(%+"PRIdMAX" years, %+"PRIdMAX" months, "
|
||
"%+"PRIdMAX" days),\n"),
|
||
pc.rel.year, pc.rel.month, pc.rel.day);
|
||
dbg_printf (_(" new date/time = '%s'\n"),
|
||
debug_strfdatetime (&tm, &pc, dbg_tm,
|
||
sizeof dbg_tm));
|
||
|
||
/* Warn about crossing DST due to time adjustment.
|
||
Example: https://bugs.gnu.org/8357
|
||
env TZ=Europe/Helsinki \
|
||
date --debug \
|
||
-d 'Mon Mar 28 00:36:07 2011 EEST 1 day ago'
|
||
|
||
This case is different than DST changes due to time adjustment,
|
||
i.e., "1 day ago" vs "24 hours ago" are calculated in different
|
||
places.
|
||
|
||
'tm0.tm_isdst' contains the DST of the input date,
|
||
'tm.tm_isdst' is the normalized result after calling
|
||
mktime (&tm).
|
||
*/
|
||
if (tm0.tm_isdst != -1 && tm.tm_isdst != tm0.tm_isdst)
|
||
dbg_printf (_("warning: daylight saving time changed after "
|
||
"date adjustment\n"));
|
||
|
||
/* Warn if the user did not ask to adjust days but mday changed,
|
||
or
|
||
user did not ask to adjust months/days but the month changed.
|
||
|
||
Example for first case:
|
||
2016-05-31 + 1 month => 2016-06-31 => 2016-07-01.
|
||
User asked to adjust month, but the day changed from 31 to 01.
|
||
|
||
Example for second case:
|
||
2016-02-29 + 1 year => 2017-02-29 => 2017-03-01.
|
||
User asked to adjust year, but the month changed from 02 to 03.
|
||
*/
|
||
if (pc.rel.day == 0
|
||
&& (tm.tm_mday != day
|
||
|| (pc.rel.month == 0 && tm.tm_mon != month)))
|
||
{
|
||
dbg_printf (_("warning: month/year adjustment resulted in "
|
||
"shifted dates:\n"));
|
||
char tm_year_buf[TM_YEAR_BUFSIZE];
|
||
dbg_printf (_(" adjusted Y M D: %s %02d %02d\n"),
|
||
tm_year_str (year, tm_year_buf), month + 1, day);
|
||
dbg_printf (_(" normalized Y M D: %s %02d %02d\n"),
|
||
tm_year_str (tm.tm_year, tm_year_buf),
|
||
tm.tm_mon + 1, tm.tm_mday);
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
/* The only "output" of this if-block is an updated Start value,
|
||
so this block must follow others that clobber Start. */
|
||
if (pc.zones_seen)
|
||
{
|
||
bool overflow = false;
|
||
#ifdef HAVE_TM_GMTOFF
|
||
long int utcoff = tm.tm_gmtoff;
|
||
#else
|
||
time_t t = Start;
|
||
struct tm gmt;
|
||
int utcoff = (gmtime_r (&t, &gmt)
|
||
? tm_diff (&tm, &gmt)
|
||
: (overflow = true, 0));
|
||
#endif
|
||
intmax_t delta;
|
||
overflow |= INT_SUBTRACT_WRAPV (pc.time_zone, utcoff, &delta);
|
||
time_t t1;
|
||
overflow |= INT_SUBTRACT_WRAPV (Start, delta, &t1);
|
||
if (overflow)
|
||
{
|
||
if (debugging (&pc))
|
||
dbg_printf (_("error: timezone %d caused time_t overflow\n"),
|
||
pc.time_zone);
|
||
goto fail;
|
||
}
|
||
Start = t1;
|
||
}
|
||
|
||
if (debugging (&pc))
|
||
{
|
||
intmax_t Starti = Start;
|
||
dbg_printf (_("'%s' = %"PRIdMAX" epoch-seconds\n"),
|
||
debug_strfdatetime (&tm, &pc, dbg_tm, sizeof dbg_tm),
|
||
Starti);
|
||
}
|
||
|
||
|
||
/* Add relative hours, minutes, and seconds. On hosts that support
|
||
leap seconds, ignore the possibility of leap seconds; e.g.,
|
||
"+ 10 minutes" adds 600 seconds, even if one of them is a
|
||
leap second. Typically this is not what the user wants, but it's
|
||
too hard to do it the other way, because the time zone indicator
|
||
must be applied before relative times, and if mktime is applied
|
||
again the time zone will be lost. */
|
||
{
|
||
intmax_t orig_ns = pc.seconds.tv_nsec;
|
||
intmax_t sum_ns = orig_ns + pc.rel.ns;
|
||
int normalized_ns = (sum_ns % BILLION + BILLION) % BILLION;
|
||
int d4 = (sum_ns - normalized_ns) / BILLION;
|
||
intmax_t d1, t1, d2, t2, t3;
|
||
time_t t4;
|
||
if (INT_MULTIPLY_WRAPV (pc.rel.hour, 60 * 60, &d1)
|
||
|| INT_ADD_WRAPV (Start, d1, &t1)
|
||
|| INT_MULTIPLY_WRAPV (pc.rel.minutes, 60, &d2)
|
||
|| INT_ADD_WRAPV (t1, d2, &t2)
|
||
|| INT_ADD_WRAPV (t2, pc.rel.seconds, &t3)
|
||
|| INT_ADD_WRAPV (t3, d4, &t4))
|
||
{
|
||
if (debugging (&pc))
|
||
dbg_printf (_("error: adding relative time caused an "
|
||
"overflow\n"));
|
||
goto fail;
|
||
}
|
||
|
||
result->tv_sec = t4;
|
||
result->tv_nsec = normalized_ns;
|
||
|
||
if (debugging (&pc)
|
||
&& (pc.rel.hour | pc.rel.minutes | pc.rel.seconds | pc.rel.ns))
|
||
{
|
||
dbg_printf (_("after time adjustment (%+"PRIdMAX" hours, "
|
||
"%+"PRIdMAX" minutes, "
|
||
"%+"PRIdMAX" seconds, %+d ns),\n"),
|
||
pc.rel.hour, pc.rel.minutes, pc.rel.seconds,
|
||
pc.rel.ns);
|
||
intmax_t t4i = t4;
|
||
dbg_printf (_(" new time = %"PRIdMAX" epoch-seconds\n"), t4i);
|
||
|
||
/* Warn about crossing DST due to time adjustment.
|
||
Example: https://bugs.gnu.org/8357
|
||
env TZ=Europe/Helsinki \
|
||
date --debug \
|
||
-d 'Mon Mar 28 00:36:07 2011 EEST 24 hours ago'
|
||
|
||
This case is different than DST changes due to days adjustment,
|
||
i.e., "1 day ago" vs "24 hours ago" are calculated in different
|
||
places.
|
||
|
||
'tm.tm_isdst' contains the date after date adjustment. */
|
||
struct tm lmt;
|
||
if (tm.tm_isdst != -1 && localtime_rz (tz, &result->tv_sec, &lmt)
|
||
&& tm.tm_isdst != lmt.tm_isdst)
|
||
dbg_printf (_("warning: daylight saving time changed after "
|
||
"time adjustment\n"));
|
||
}
|
||
}
|
||
}
|
||
|
||
if (debugging (&pc))
|
||
{
|
||
/* Special case: using 'date -u' simply set TZ=UTC0 */
|
||
if (! tzstring)
|
||
dbg_printf (_("timezone: system default\n"));
|
||
else if (STREQ (tzstring, "UTC0"))
|
||
dbg_printf (_("timezone: Universal Time\n"));
|
||
else
|
||
dbg_printf (_("timezone: TZ=\"%s\" environment value\n"), tzstring);
|
||
|
||
intmax_t sec = result->tv_sec;
|
||
int nsec = result->tv_nsec;
|
||
dbg_printf (_("final: %"PRIdMAX".%09d (epoch-seconds)\n"),
|
||
sec, nsec);
|
||
|
||
struct tm gmt, lmt;
|
||
bool got_utc = !!gmtime_r (&result->tv_sec, &gmt);
|
||
if (got_utc)
|
||
dbg_printf (_("final: %s (UTC)\n"),
|
||
debug_strfdatetime (&gmt, NULL,
|
||
dbg_tm, sizeof dbg_tm));
|
||
if (localtime_rz (tz, &result->tv_sec, &lmt))
|
||
{
|
||
#ifdef HAVE_TM_GMTOFF
|
||
bool got_utcoff = true;
|
||
long int utcoff = lmt.tm_gmtoff;
|
||
#else
|
||
bool got_utcoff = got_utc;
|
||
int utcoff;
|
||
if (got_utcoff)
|
||
utcoff = tm_diff (&lmt, &gmt);
|
||
#endif
|
||
if (got_utcoff)
|
||
dbg_printf (_("final: %s (UTC%s)\n"),
|
||
debug_strfdatetime (&lmt, NULL, dbg_tm, sizeof dbg_tm),
|
||
time_zone_str (utcoff, time_zone_buf));
|
||
else
|
||
dbg_printf (_("final: %s (unknown time zone offset)\n"),
|
||
debug_strfdatetime (&lmt, NULL, dbg_tm, sizeof dbg_tm));
|
||
}
|
||
}
|
||
|
||
ok = true;
|
||
|
||
fail:
|
||
if (tz != tzdefault)
|
||
tzfree (tz);
|
||
free (tz1alloc);
|
||
return ok;
|
||
}
|
||
|
||
#ifdef GNULIB_PARSE_DATETIME2
|
||
/* Parse a date/time string, storing the resulting time value into *RESULT.
|
||
The string itself is pointed to by P. Return true if successful.
|
||
P can be an incomplete or relative time specification; if so, use
|
||
*NOW as the basis for the returned time. Default to timezone
|
||
TZDEFAULT, which corresponds to tzalloc (TZSTRING). */
|
||
bool
|
||
parse_datetime2 (struct timespec *result, char const *p,
|
||
struct timespec const *now, unsigned int flags,
|
||
timezone_t tzdefault, char const *tzstring)
|
||
{
|
||
return parse_datetime_body (result, p, now, flags, tzdefault, tzstring);
|
||
}
|
||
#endif
|
||
|
||
|
||
/* The plain interface: run with debug=false and the default timezone. */
|
||
bool
|
||
parse_datetime (struct timespec *result, char const *p,
|
||
struct timespec const *now)
|
||
{
|
||
char const *tzstring = getenv ("TZ");
|
||
timezone_t tz = tzalloc (tzstring);
|
||
if (!tz)
|
||
return false;
|
||
bool ok = parse_datetime_body (result, p, now, 0, tz, tzstring);
|
||
tzfree (tz);
|
||
return ok;
|
||
}
|
||
|
||
#if TEST
|
||
|
||
int
|
||
main (int ac, char **av)
|
||
{
|
||
char buff[BUFSIZ];
|
||
|
||
printf ("Enter date, or blank line to exit.\n\t> ");
|
||
fflush (stdout);
|
||
|
||
buff[BUFSIZ - 1] = '\0';
|
||
while (fgets (buff, BUFSIZ - 1, stdin) && buff[0])
|
||
{
|
||
struct timespec d;
|
||
struct tm const *tm;
|
||
if (! parse_datetime (&d, buff, NULL))
|
||
printf ("Bad format - couldn't convert.\n");
|
||
else if (! (tm = localtime (&d.tv_sec)))
|
||
{
|
||
intmax_t sec = d.tv_sec;
|
||
printf ("localtime (%"PRIdMAX") failed\n", sec);
|
||
}
|
||
else
|
||
{
|
||
int ns = d.tv_nsec;
|
||
char tm_year_buf[TM_YEAR_BUFSIZE];
|
||
printf ("%s-%02d-%02d %02d:%02d:%02d.%09d\n",
|
||
tm_year_str (tm->tm_year, tm_year_buf),
|
||
tm->tm_mon + 1, tm->tm_mday,
|
||
tm->tm_hour, tm->tm_min, tm->tm_sec, ns);
|
||
}
|
||
printf ("\t> ");
|
||
fflush (stdout);
|
||
}
|
||
return 0;
|
||
}
|
||
#endif /* TEST */
|