#include #include "aes.h" #define Nb 4 #if defined(AES256) && (AES256 == 1) #define Nk 8 #define Nr 14 #elif defined(AES192) && (AES192 == 1) #define Nk 6 #define Nr 12 #else #define Nk 4 // The number of 32 bit words in a key. #define Nr 10 // The number of rounds in AES Cipher. #endif #ifndef MULTIPLY_AS_A_FUNCTION #define MULTIPLY_AS_A_FUNCTION 0 #endif typedef uint8_t state_t[4][4]; static const uint8_t sbox[256] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) static const uint8_t rsbox[256] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; #endif static const uint8_t Rcon[11] = { 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 }; #define getSBoxValue(num) (sbox[(num)]) static void KeyExpansion(uint8_t * RoundKey, const uint8_t * Key) { unsigned i, j, k; uint8_t tempa[4]; // Used for the column/row operations for (i = 0; i < Nk; ++i) { RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; } for (i = Nk; i < Nb * (Nr + 1); ++i) { { k = (i - 1) * 4; tempa[0] = RoundKey[k + 0]; tempa[1] = RoundKey[k + 1]; tempa[2] = RoundKey[k + 2]; tempa[3] = RoundKey[k + 3]; } if (i % Nk == 0) { { const uint8_t u8tmp = tempa[0]; tempa[0] = tempa[1]; tempa[1] = tempa[2]; tempa[2] = tempa[3]; tempa[3] = u8tmp; } { tempa[0] = getSBoxValue(tempa[0]); tempa[1] = getSBoxValue(tempa[1]); tempa[2] = getSBoxValue(tempa[2]); tempa[3] = getSBoxValue(tempa[3]); } tempa[0] = tempa[0] ^ Rcon[i / Nk]; } #if defined(AES256) && (AES256 == 1) if (i % Nk == 4) { { tempa[0] = getSBoxValue(tempa[0]); tempa[1] = getSBoxValue(tempa[1]); tempa[2] = getSBoxValue(tempa[2]); tempa[3] = getSBoxValue(tempa[3]); } } #endif j = i * 4; k = (i - Nk) * 4; RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0]; RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1]; RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2]; RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3]; } } void AES_init_ctx(struct AES_ctx *ctx, const uint8_t * key) { KeyExpansion(ctx->RoundKey, key); } #if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1)) void AES_init_ctx_iv(struct AES_ctx *ctx, const uint8_t * key, const uint8_t * iv) { KeyExpansion(ctx->RoundKey, key); memcpy(ctx->Iv, iv, AES_BLOCKLEN); } void AES_ctx_set_iv(struct AES_ctx *ctx, const uint8_t * iv) { memcpy(ctx->Iv, iv, AES_BLOCKLEN); } #endif static void AddRoundKey(uint8_t round, state_t * state, const uint8_t * RoundKey) { uint8_t i, j; for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) { (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j]; } } } static void SubBytes(state_t * state) { uint8_t i, j; for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) { (*state)[j][i] = getSBoxValue((*state)[j][i]); } } } static void ShiftRows(state_t * state) { uint8_t temp; temp = (*state)[0][1]; (*state)[0][1] = (*state)[1][1]; (*state)[1][1] = (*state)[2][1]; (*state)[2][1] = (*state)[3][1]; (*state)[3][1] = temp; temp = (*state)[0][2]; (*state)[0][2] = (*state)[2][2]; (*state)[2][2] = temp; temp = (*state)[1][2]; (*state)[1][2] = (*state)[3][2]; (*state)[3][2] = temp; temp = (*state)[0][3]; (*state)[0][3] = (*state)[3][3]; (*state)[3][3] = (*state)[2][3]; (*state)[2][3] = (*state)[1][3]; (*state)[1][3] = temp; } static uint8_t xtime(uint8_t x) { return ((x << 1) ^ (((x >> 7) & 1) * 0x1b)); } static void MixColumns(state_t * state) { uint8_t i; uint8_t Tmp, Tm, t; for (i = 0; i < 4; ++i) { t = (*state)[i][0]; Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3]; Tm = (*state)[i][0] ^ (*state)[i][1]; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp; Tm = (*state)[i][1] ^ (*state)[i][2]; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp; Tm = (*state)[i][2] ^ (*state)[i][3]; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp; Tm = (*state)[i][3] ^ t; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp; } } #if MULTIPLY_AS_A_FUNCTION static uint8_t Multiply(uint8_t x, uint8_t y) { return (((y & 1) * x) ^ ((y >> 1 & 1) * xtime(x)) ^ ((y >> 2 & 1) * xtime(xtime(x))) ^ ((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^ ((y >> 4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */ } #else #define Multiply(x, y) \ ( ((y & 1) * x) ^ \ ((y>>1 & 1) * xtime(x)) ^ \ ((y>>2 & 1) * xtime(xtime(x))) ^ \ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \ #endif #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) #define getSBoxInvert(num) (rsbox[(num)]) static void InvMixColumns(state_t * state) { int i; uint8_t a, b, c, d; for (i = 0; i < 4; ++i) { a = (*state)[i][0]; b = (*state)[i][1]; c = (*state)[i][2]; d = (*state)[i][3]; (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09); (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d); (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b); (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e); } } static void InvSubBytes(state_t * state) { uint8_t i, j; for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) { (*state)[j][i] = getSBoxInvert((*state)[j][i]); } } } static void InvShiftRows(state_t * state) { uint8_t temp; temp = (*state)[3][1]; (*state)[3][1] = (*state)[2][1]; (*state)[2][1] = (*state)[1][1]; (*state)[1][1] = (*state)[0][1]; (*state)[0][1] = temp; temp = (*state)[0][2]; (*state)[0][2] = (*state)[2][2]; (*state)[2][2] = temp; temp = (*state)[1][2]; (*state)[1][2] = (*state)[3][2]; (*state)[3][2] = temp; temp = (*state)[0][3]; (*state)[0][3] = (*state)[1][3]; (*state)[1][3] = (*state)[2][3]; (*state)[2][3] = (*state)[3][3]; (*state)[3][3] = temp; } #endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) static void Cipher(state_t * state, const uint8_t * RoundKey) { uint8_t round = 0; AddRoundKey(0, state, RoundKey); for (round = 1;; ++round) { SubBytes(state); ShiftRows(state); if (round == Nr) { break; } MixColumns(state); AddRoundKey(round, state, RoundKey); } AddRoundKey(Nr, state, RoundKey); } #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) static void InvCipher(state_t * state, const uint8_t * RoundKey) { uint8_t round = 0; AddRoundKey(Nr, state, RoundKey); for (round = (Nr - 1);; --round) { InvShiftRows(state); InvSubBytes(state); AddRoundKey(round, state, RoundKey); if (round == 0) { break; } InvMixColumns(state); } } #endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) #if defined(ECB) && (ECB == 1) void AES_ECB_encrypt(const struct AES_ctx *ctx, uint8_t * buf) { Cipher((state_t *) buf, ctx->RoundKey); } void AES_ECB_decrypt(const struct AES_ctx *ctx, uint8_t * buf) { // The next function call decrypts the PlainText with the Key using AES algorithm. InvCipher((state_t *) buf, ctx->RoundKey); } #endif // #if defined(ECB) && (ECB == 1) #if defined(CBC) && (CBC == 1) static void XorWithIv(uint8_t * buf, const uint8_t * Iv) { uint8_t i; for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size { buf[i] ^= Iv[i]; } } void AES_CBC_encrypt_buffer(struct AES_ctx *ctx, uint8_t * buf, size_t length) { size_t i; uint8_t *Iv = ctx->Iv; for (i = 0; i < length; i += AES_BLOCKLEN) { XorWithIv(buf, Iv); Cipher((state_t *) buf, ctx->RoundKey); Iv = buf; buf += AES_BLOCKLEN; } /* store Iv in ctx for next call */ memcpy(ctx->Iv, Iv, AES_BLOCKLEN); } void AES_CBC_decrypt_buffer(struct AES_ctx *ctx, uint8_t * buf, size_t length) { size_t i; uint8_t storeNextIv[AES_BLOCKLEN]; for (i = 0; i < length; i += AES_BLOCKLEN) { memcpy(storeNextIv, buf, AES_BLOCKLEN); InvCipher((state_t *) buf, ctx->RoundKey); XorWithIv(buf, ctx->Iv); memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN); buf += AES_BLOCKLEN; } } #endif // #if defined(CBC) && (CBC == 1) #if defined(CTR) && (CTR == 1) void AES_CTR_xcrypt_buffer(struct AES_ctx *ctx, uint8_t * buf, size_t length) { uint8_t buffer[AES_BLOCKLEN]; size_t i; int bi; for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi) { if (bi == AES_BLOCKLEN) { /* we need to regen xor compliment in buffer */ memcpy(buffer, ctx->Iv, AES_BLOCKLEN); Cipher((state_t *) buffer, ctx->RoundKey); /* Increment Iv and handle overflow */ for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi) { /* inc will overflow */ if (ctx->Iv[bi] == 255) { ctx->Iv[bi] = 0; continue; } ctx->Iv[bi] += 1; break; } bi = 0; } buf[i] = (buf[i] ^ buffer[bi]); } } #endif // #if defined(CTR) && (CTR == 1)