Files
tunnel/tp_decrypt/tp_decrypt.py.c
2023-02-13 18:09:13 +08:00

654 lines
21 KiB
C

char Encrypted_data[]="A09282E69616D602020202A0A372F5F5E69616D6F5F57202D3D302F5F556D616E6F5F5026696A0A0A0924627F67737371607F53656468247E696270702020202A047C65737562702465647079727365646024757074757F6023202020202A0A092825646F6365646E2D5A36313B5E69626F536564602D3024627F67737371607F536564602020202A01647164602D6F646E61627025667F6D65627023202020202A0A0D5461607D2864776E656C6A3B5E69626F536564602D302E69626F536564602020202A076E69646461607025667F6D65627023202020202A0A0E62757475627020202020202020202020202A09272E2164716460246564707972736E656024696C61667E69602C2470797273656460247F6E602E6163602A327F6272754728247E6962707020202020202020202020202A0A346160702D31202D51302D20296D2864776E656C6B5E69626F53656460266960202020202020202A0A392461607825676E6162702E69602960227F66602020202A0E627574756270202020202020202A09272E2164716460246564707972736E656024696C61667E69602C2470797273656460247F6E602E6163602A327F6272754728247E69627070202020202020202A0A3631302E30246160702669602020202A092D513D2864776E656C6B5E69626F53656468247E69602D30246160702020202A092E69626F536564682E656C602D302864776E656C602020202A076E6964646160702733736B6073202B636568636023202020202A0A0E627574756270202020202020202A09272E24707972736564602E656867702E6F6964707563687560247F67602A327F6272754728247E69627070202020202020202A0A35602371602E6F6964707563687540247075636875602020202A092E69626F536E6568247079727365646E237561602D302E69626F53656460202020202020202A0A397274702020202A04707972736564602F646023202020202A0A0929267968297162727165647972602C2342434F55444F4D4E235541402C2929756B682971627271656479726827756E6E235541402D30237561602020202A0D50303870302C20303870302C20303870302C20303870302C20303870302C20303870302C20303870302C20303870302C20303870302C20303870302C20303870302C20303870302C20303870302C20303870302C20303870302C203038703B502D302679602020202A0D50202020202020202020202A0C27363870302C27383870302C25646870302C29323870302C20323870302C27323870302C23626870302C27383870302C21626870302C21636870302C24623870302C27393870302C21303870302C21633870302C23353870302C2538387030202020202020202020202A0C20353870302C24383870302C23666870302C22383870302C27343870302C29336870302C21363870302C21616870302C23313870302C23333870302C24336870302C21343870302C22633870302C25663870302C26326870302C263468703B502D3029756B602020202A067960246E616029756B60256271607562707023202020202A0A0E627574756270202020202020202A09272E2864776E656C60246162602C24627F677373716070246564707972736E656024696C61667E69602A327F6272754728247E69627070202020202020202A0A3631302D3C30292E69626F536E65682E656C602669602020202A09256572745D35647164696C6166702C292825646F636E656E24627F67737371607F536E656825646F6365646436326E243635637162602D302E69626F536E65602020202A05646F636564602436356371626023202020202A0A0D513B567762716E237973702D3024627F67737371607F536E65602020202A0A0A39282E69616D602665646A0A0A0355414024727F607D69602275686079634E2F6470797273402D6F62766A0A0379737024727F607D696A0436356371626024727F607D696A033D3C6566756C6F55676165776E616C602A3E6F6864797360232A033E68FC2B73B010CD805CF9D1CE1A8C64BC2";
int encrypted_text_len=1483;
const char key[16] = "aixiao.me";
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <ctype.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdbool.h>
#define CBC 1
#define CTR 1
#define ECB 1
#ifndef _AES_H_
#define _AES_H_
#include <stdint.h>
#include <stddef.h>
#ifndef CBC
#define CBC 1
#endif
#ifndef ECB
#define ECB 1
#endif
#ifndef CTR
#define CTR 1
#endif
#define AES128 1
//#define AES192 1
//#define AES256 1
#define AES_BLOCKLEN 16 // Block length in bytes - AES is 128b block only
#if defined(AES256) && (AES256 == 1)
#define AES_KEYLEN 32
#define AES_keyExpSize 240
#elif defined(AES192) && (AES192 == 1)
#define AES_KEYLEN 24
#define AES_keyExpSize 208
#else
#define AES_KEYLEN 16 // Key length in bytes
#define AES_keyExpSize 176
#endif
struct AES_ctx {
uint8_t RoundKey[AES_keyExpSize];
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
uint8_t Iv[AES_BLOCKLEN];
#endif
};
void AES_init_ctx(struct AES_ctx *ctx, const uint8_t * key);
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx *ctx, const uint8_t * key, const uint8_t * iv);
void AES_ctx_set_iv(struct AES_ctx *ctx, const uint8_t * iv);
#endif
#if defined(ECB) && (ECB == 1)
void AES_ECB_encrypt(const struct AES_ctx *ctx, uint8_t * buf);
void AES_ECB_decrypt(const struct AES_ctx *ctx, uint8_t * buf);
#endif // #if defined(ECB) && (ECB == !)
#if defined(CBC) && (CBC == 1)
void AES_CBC_encrypt_buffer(struct AES_ctx *ctx, uint8_t * buf, size_t length);
void AES_CBC_decrypt_buffer(struct AES_ctx *ctx, uint8_t * buf, size_t length);
#endif // #if defined(CBC) && (CBC == 1)
#if defined(CTR) && (CTR == 1)
void AES_CTR_xcrypt_buffer(struct AES_ctx *ctx, uint8_t * buf, size_t length);
#endif // #if defined(CTR) && (CTR == 1)
#endif // _AES_H_
#define Nb 4
#if defined(AES256) && (AES256 == 1)
#define Nk 8
#define Nr 14
#elif defined(AES192) && (AES192 == 1)
#define Nk 6
#define Nr 12
#else
#define Nk 4 // The number of 32 bit words in a key.
#define Nr 10 // The number of rounds in AES Cipher.
#endif
#ifndef MULTIPLY_AS_A_FUNCTION
#define MULTIPLY_AS_A_FUNCTION 0
#endif
typedef uint8_t state_t[4][4];
static const uint8_t sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
static const uint8_t rsbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
};
#endif
static const uint8_t Rcon[11] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
};
#define getSBoxValue(num) (sbox[(num)])
static void KeyExpansion(uint8_t * RoundKey, const uint8_t * Key)
{
unsigned i, j, k;
uint8_t tempa[4]; // Used for the column/row operations
for (i = 0; i < Nk; ++i) {
RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
}
for (i = Nk; i < Nb * (Nr + 1); ++i) {
{
k = (i - 1) * 4;
tempa[0] = RoundKey[k + 0];
tempa[1] = RoundKey[k + 1];
tempa[2] = RoundKey[k + 2];
tempa[3] = RoundKey[k + 3];
}
if (i % Nk == 0) {
{
const uint8_t u8tmp = tempa[0];
tempa[0] = tempa[1];
tempa[1] = tempa[2];
tempa[2] = tempa[3];
tempa[3] = u8tmp;
}
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
tempa[0] = tempa[0] ^ Rcon[i / Nk];
}
#if defined(AES256) && (AES256 == 1)
if (i % Nk == 4) {
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
}
#endif
j = i * 4;
k = (i - Nk) * 4;
RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
}
}
void AES_init_ctx(struct AES_ctx *ctx, const uint8_t * key)
{
KeyExpansion(ctx->RoundKey, key);
}
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx *ctx, const uint8_t * key, const uint8_t * iv)
{
KeyExpansion(ctx->RoundKey, key);
memcpy(ctx->Iv, iv, AES_BLOCKLEN);
}
void AES_ctx_set_iv(struct AES_ctx *ctx, const uint8_t * iv)
{
memcpy(ctx->Iv, iv, AES_BLOCKLEN);
}
#endif
static void AddRoundKey(uint8_t round, state_t * state, const uint8_t * RoundKey)
{
uint8_t i, j;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
(*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
}
}
}
static void SubBytes(state_t * state)
{
uint8_t i, j;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
(*state)[j][i] = getSBoxValue((*state)[j][i]);
}
}
}
static void ShiftRows(state_t * state)
{
uint8_t temp;
temp = (*state)[0][1];
(*state)[0][1] = (*state)[1][1];
(*state)[1][1] = (*state)[2][1];
(*state)[2][1] = (*state)[3][1];
(*state)[3][1] = temp;
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
temp = (*state)[0][3];
(*state)[0][3] = (*state)[3][3];
(*state)[3][3] = (*state)[2][3];
(*state)[2][3] = (*state)[1][3];
(*state)[1][3] = temp;
}
static uint8_t xtime(uint8_t x)
{
return ((x << 1) ^ (((x >> 7) & 1) * 0x1b));
}
static void MixColumns(state_t * state)
{
uint8_t i;
uint8_t Tmp, Tm, t;
for (i = 0; i < 4; ++i) {
t = (*state)[i][0];
Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3];
Tm = (*state)[i][0] ^ (*state)[i][1];
Tm = xtime(Tm);
(*state)[i][0] ^= Tm ^ Tmp;
Tm = (*state)[i][1] ^ (*state)[i][2];
Tm = xtime(Tm);
(*state)[i][1] ^= Tm ^ Tmp;
Tm = (*state)[i][2] ^ (*state)[i][3];
Tm = xtime(Tm);
(*state)[i][2] ^= Tm ^ Tmp;
Tm = (*state)[i][3] ^ t;
Tm = xtime(Tm);
(*state)[i][3] ^= Tm ^ Tmp;
}
}
#if MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y)
{
return (((y & 1) * x) ^ ((y >> 1 & 1) * xtime(x)) ^ ((y >> 2 & 1) * xtime(xtime(x))) ^ ((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^ ((y >> 4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */
}
#else
#define Multiply(x, y) \
( ((y & 1) * x) ^ \
((y>>1 & 1) * xtime(x)) ^ \
((y>>2 & 1) * xtime(xtime(x))) ^ \
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
#endif
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
#define getSBoxInvert(num) (rsbox[(num)])
static void InvMixColumns(state_t * state)
{
int i;
uint8_t a, b, c, d;
for (i = 0; i < 4; ++i) {
a = (*state)[i][0];
b = (*state)[i][1];
c = (*state)[i][2];
d = (*state)[i][3];
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
static void InvSubBytes(state_t * state)
{
uint8_t i, j;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
(*state)[j][i] = getSBoxInvert((*state)[j][i]);
}
}
}
static void InvShiftRows(state_t * state)
{
uint8_t temp;
temp = (*state)[3][1];
(*state)[3][1] = (*state)[2][1];
(*state)[2][1] = (*state)[1][1];
(*state)[1][1] = (*state)[0][1];
(*state)[0][1] = temp;
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
temp = (*state)[0][3];
(*state)[0][3] = (*state)[1][3];
(*state)[1][3] = (*state)[2][3];
(*state)[2][3] = (*state)[3][3];
(*state)[3][3] = temp;
}
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
static void Cipher(state_t * state, const uint8_t * RoundKey)
{
uint8_t round = 0;
AddRoundKey(0, state, RoundKey);
for (round = 1;; ++round) {
SubBytes(state);
ShiftRows(state);
if (round == Nr) {
break;
}
MixColumns(state);
AddRoundKey(round, state, RoundKey);
}
AddRoundKey(Nr, state, RoundKey);
}
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
static void InvCipher(state_t * state, const uint8_t * RoundKey)
{
uint8_t round = 0;
AddRoundKey(Nr, state, RoundKey);
for (round = (Nr - 1);; --round) {
InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(round, state, RoundKey);
if (round == 0) {
break;
}
InvMixColumns(state);
}
}
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
#if defined(ECB) && (ECB == 1)
void AES_ECB_encrypt(const struct AES_ctx *ctx, uint8_t * buf)
{
Cipher((state_t *) buf, ctx->RoundKey);
}
void AES_ECB_decrypt(const struct AES_ctx *ctx, uint8_t * buf)
{
// The next function call decrypts the PlainText with the Key using AES algorithm.
InvCipher((state_t *) buf, ctx->RoundKey);
}
#endif // #if defined(ECB) && (ECB == 1)
#if defined(CBC) && (CBC == 1)
static void XorWithIv(uint8_t * buf, const uint8_t * Iv)
{
uint8_t i;
for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size
{
buf[i] ^= Iv[i];
}
}
void AES_CBC_encrypt_buffer(struct AES_ctx *ctx, uint8_t * buf, size_t length)
{
size_t i;
uint8_t *Iv = ctx->Iv;
for (i = 0; i < length; i += AES_BLOCKLEN) {
XorWithIv(buf, Iv);
Cipher((state_t *) buf, ctx->RoundKey);
Iv = buf;
buf += AES_BLOCKLEN;
}
/* store Iv in ctx for next call */
memcpy(ctx->Iv, Iv, AES_BLOCKLEN);
}
void AES_CBC_decrypt_buffer(struct AES_ctx *ctx, uint8_t * buf, size_t length)
{
size_t i;
uint8_t storeNextIv[AES_BLOCKLEN];
for (i = 0; i < length; i += AES_BLOCKLEN) {
memcpy(storeNextIv, buf, AES_BLOCKLEN);
InvCipher((state_t *) buf, ctx->RoundKey);
XorWithIv(buf, ctx->Iv);
memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);
buf += AES_BLOCKLEN;
}
}
#endif // #if defined(CBC) && (CBC == 1)
#if defined(CTR) && (CTR == 1)
void AES_CTR_xcrypt_buffer(struct AES_ctx *ctx, uint8_t * buf, size_t length)
{
uint8_t buffer[AES_BLOCKLEN];
size_t i;
int bi;
for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi) {
if (bi == AES_BLOCKLEN) { /* we need to regen xor compliment in buffer */
memcpy(buffer, ctx->Iv, AES_BLOCKLEN);
Cipher((state_t *) buffer, ctx->RoundKey);
/* Increment Iv and handle overflow */
for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi) {
/* inc will overflow */
if (ctx->Iv[bi] == 255) {
ctx->Iv[bi] = 0;
continue;
}
ctx->Iv[bi] += 1;
break;
}
bi = 0;
}
buf[i] = (buf[i] ^ buffer[bi]);
}
}
#endif // #if defined(CTR) && (CTR == 1)
static int oneHexChar2Hex(char hex)
{
int outHex = 0;
if (isdigit(hex)) {
outHex = hex - '0';
} else if (isupper(hex)) {
outHex = hex - 'A' + 10;
} else {
outHex = hex - 'a' + 10;
}
return outHex;
}
static int HexString2Hex(char *inHexString, char *outHex, int count)
{
int ret = -1;
int len = 0;
int i;
char ch1, ch2;
if (NULL == inHexString)
return -1;
len = count;
if (len < 1)
return -1;
len &= ~1;
for (i = 0; i < len; i += 2) {
ch1 = inHexString[i];
ch2 = inHexString[i + 1];
outHex[i / 2 + 1] = 0;
if (isxdigit(ch1) && isxdigit(ch2)) {
ch1 = oneHexChar2Hex(ch1);
ch2 = oneHexChar2Hex(ch2);
outHex[i / 2] = (ch1 << 4) | ch2;
} else {
goto EXIT;
}
}
return 0;
EXIT:
return ret;
}
static int is_Resolver(char *shll_text, char *shbin)
{
char *p, *p1;
char temp[270];
p = strstr(shll_text, "\n");
memcpy(shbin, shll_text, p - shll_text);
if (0 == strncmp(shbin, "#!", 2))
{
p1 = strchr(shbin, '/');
strcpy(shbin, p1);
}
else if (0 == strncmp(shbin, ":", 1))
{
strcpy(shbin, getenv("SHELL"));
}
else
{
printf("unknown shell!\n");
return -1;
}
memset(temp, 0, 270);
strcpy(temp, "which ");
strcat(temp, shbin);
strcat(temp, " 1> /dev/null");
if (0 != system(temp)) // 不存在解析器
{
printf("not found shell!\n");
return -1;
}
return 0;
}
void reverse_string(char *str, int len)
{
char *p1;
char *p2;
p1 = str;
p2 = str + len - 1; //p2指向字符串尾地址
if (str == NULL) {
printf("Null pointer error!");
return;
}
while (p1 < p2) //当p1地址小于p2地址时执行循环
{
char c = *p1;
*p1 = *p2; //完成指针指向地址的值的交换
*p2 = c;
p1++; //交换完毕后p1指针指向下一个字符地址
p2--; //交换完毕后p2指针指向上一个字符地址
}
}
#define BUFFER_SIZE 270
int main(int argc, char *argv[])
{
char *argvs[BUFFER_SIZE];
int l=1;
int i=4;
//static uint8_t key[16] = "aixiao.me";
struct AES_ctx ctx;
uint8_t *Hex_string = (uint8_t *) malloc(encrypted_text_len*2);
char *shbin = NULL;
reverse_string((char *)Encrypted_data, encrypted_text_len*2);
memset(Hex_string, 0, encrypted_text_len*2);
AES_init_ctx(&ctx, key);
HexString2Hex((char *)Encrypted_data, (char *)Hex_string, sizeof(Encrypted_data));
AES_ECB_decrypt(&ctx, Hex_string);
//printf("%s\n", Hex_string);
shbin = (char *) malloc(BUFFER_SIZE);
memset(shbin, 0, BUFFER_SIZE);
if (-1 == is_Resolver((char *)Hex_string, shbin))
{
goto EXIT;
}
//printf("%s\n", shbin);
argvs[0] = argv[0];
argvs[1] = "-c";
argvs[2] = (char *)Hex_string;
//argvs[3] = argv[0];
for(i=3; i<=argc-1+3; i++)
{
argvs[i] = argv[l];
l++;
}
/*
for (int i=0; i<=argc-1+3; i++)
{
printf("%s", argvs[i]);
}
*/
execvp(shbin, argvs);
EXIT:
free(Hex_string);
free(shbin);
return 0;
}