denyhosts/clamav/libclamav_rust/.cargo/vendor/half/src/binary16.rs

1806 lines
57 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#[cfg(feature = "bytemuck")]
use bytemuck::{Pod, Zeroable};
use core::{
cmp::Ordering,
iter::{Product, Sum},
num::FpCategory,
ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
};
#[cfg(not(target_arch = "spirv"))]
use core::{
fmt::{
Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex,
},
num::ParseFloatError,
str::FromStr,
};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "zerocopy")]
use zerocopy::{AsBytes, FromBytes};
pub(crate) mod convert;
/// A 16-bit floating point type implementing the IEEE 754-2008 standard [`binary16`] a.k.a `half`
/// format.
///
/// This 16-bit floating point type is intended for efficient storage where the full range and
/// precision of a larger floating point value is not required. Because [`f16`] is primarily for
/// efficient storage, floating point operations such as addition, multiplication, etc. are not
/// implemented. Operations should be performed with [`f32`] or higher-precision types and converted
/// to/from [`f16`] as necessary.
///
/// [`binary16`]: https://en.wikipedia.org/wiki/Half-precision_floating-point_format
#[allow(non_camel_case_types)]
#[derive(Clone, Copy, Default)]
#[repr(transparent)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))]
#[cfg_attr(feature = "zerocopy", derive(AsBytes, FromBytes))]
pub struct f16(u16);
impl f16 {
/// Constructs a 16-bit floating point value from the raw bits.
#[inline]
#[must_use]
pub const fn from_bits(bits: u16) -> f16 {
f16(bits)
}
/// Constructs a 16-bit floating point value from a 32-bit floating point value.
///
/// If the 32-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are
/// preserved. 32-bit subnormal values are too tiny to be represented in 16-bits and result in
/// ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals
/// or ±0. All other values are truncated and rounded to the nearest representable 16-bit
/// value.
#[inline]
#[must_use]
pub fn from_f32(value: f32) -> f16 {
f16(convert::f32_to_f16(value))
}
/// Constructs a 16-bit floating point value from a 32-bit floating point value.
///
/// This function is identical to [`from_f32`][Self::from_f32] except it never uses hardware
/// intrinsics, which allows it to be `const`. [`from_f32`][Self::from_f32] should be preferred
/// in any non-`const` context.
///
/// If the 32-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are
/// preserved. 32-bit subnormal values are too tiny to be represented in 16-bits and result in
/// ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals
/// or ±0. All other values are truncated and rounded to the nearest representable 16-bit
/// value.
#[inline]
#[must_use]
pub const fn from_f32_const(value: f32) -> f16 {
f16(convert::f32_to_f16_fallback(value))
}
/// Constructs a 16-bit floating point value from a 64-bit floating point value.
///
/// If the 64-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are
/// preserved. 64-bit subnormal values are too tiny to be represented in 16-bits and result in
/// ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals
/// or ±0. All other values are truncated and rounded to the nearest representable 16-bit
/// value.
#[inline]
#[must_use]
pub fn from_f64(value: f64) -> f16 {
f16(convert::f64_to_f16(value))
}
/// Constructs a 16-bit floating point value from a 64-bit floating point value.
///
/// This function is identical to [`from_f64`][Self::from_f64] except it never uses hardware
/// intrinsics, which allows it to be `const`. [`from_f64`][Self::from_f64] should be preferred
/// in any non-`const` context.
///
/// If the 64-bit value is to large to fit in 16-bits, ±∞ will result. NaN values are
/// preserved. 64-bit subnormal values are too tiny to be represented in 16-bits and result in
/// ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit subnormals
/// or ±0. All other values are truncated and rounded to the nearest representable 16-bit
/// value.
#[inline]
#[must_use]
pub const fn from_f64_const(value: f64) -> f16 {
f16(convert::f64_to_f16_fallback(value))
}
/// Converts a [`f16`] into the underlying bit representation.
#[inline]
#[must_use]
pub const fn to_bits(self) -> u16 {
self.0
}
/// Returns the memory representation of the underlying bit representation as a byte array in
/// little-endian byte order.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let bytes = f16::from_f32(12.5).to_le_bytes();
/// assert_eq!(bytes, [0x40, 0x4A]);
/// ```
#[inline]
#[must_use]
pub const fn to_le_bytes(self) -> [u8; 2] {
self.0.to_le_bytes()
}
/// Returns the memory representation of the underlying bit representation as a byte array in
/// big-endian (network) byte order.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let bytes = f16::from_f32(12.5).to_be_bytes();
/// assert_eq!(bytes, [0x4A, 0x40]);
/// ```
#[inline]
#[must_use]
pub const fn to_be_bytes(self) -> [u8; 2] {
self.0.to_be_bytes()
}
/// Returns the memory representation of the underlying bit representation as a byte array in
/// native byte order.
///
/// As the target platform's native endianness is used, portable code should use
/// [`to_be_bytes`][Self::to_be_bytes] or [`to_le_bytes`][Self::to_le_bytes], as appropriate,
/// instead.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let bytes = f16::from_f32(12.5).to_ne_bytes();
/// assert_eq!(bytes, if cfg!(target_endian = "big") {
/// [0x4A, 0x40]
/// } else {
/// [0x40, 0x4A]
/// });
/// ```
#[inline]
#[must_use]
pub const fn to_ne_bytes(self) -> [u8; 2] {
self.0.to_ne_bytes()
}
/// Creates a floating point value from its representation as a byte array in little endian.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let value = f16::from_le_bytes([0x40, 0x4A]);
/// assert_eq!(value, f16::from_f32(12.5));
/// ```
#[inline]
#[must_use]
pub const fn from_le_bytes(bytes: [u8; 2]) -> f16 {
f16::from_bits(u16::from_le_bytes(bytes))
}
/// Creates a floating point value from its representation as a byte array in big endian.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let value = f16::from_be_bytes([0x4A, 0x40]);
/// assert_eq!(value, f16::from_f32(12.5));
/// ```
#[inline]
#[must_use]
pub const fn from_be_bytes(bytes: [u8; 2]) -> f16 {
f16::from_bits(u16::from_be_bytes(bytes))
}
/// Creates a floating point value from its representation as a byte array in native endian.
///
/// As the target platform's native endianness is used, portable code likely wants to use
/// [`from_be_bytes`][Self::from_be_bytes] or [`from_le_bytes`][Self::from_le_bytes], as
/// appropriate instead.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let value = f16::from_ne_bytes(if cfg!(target_endian = "big") {
/// [0x4A, 0x40]
/// } else {
/// [0x40, 0x4A]
/// });
/// assert_eq!(value, f16::from_f32(12.5));
/// ```
#[inline]
#[must_use]
pub const fn from_ne_bytes(bytes: [u8; 2]) -> f16 {
f16::from_bits(u16::from_ne_bytes(bytes))
}
/// Converts a [`f16`] value into a `f32` value.
///
/// This conversion is lossless as all 16-bit floating point values can be represented exactly
/// in 32-bit floating point.
#[inline]
#[must_use]
pub fn to_f32(self) -> f32 {
convert::f16_to_f32(self.0)
}
/// Converts a [`f16`] value into a `f32` value.
///
/// This function is identical to [`to_f32`][Self::to_f32] except it never uses hardware
/// intrinsics, which allows it to be `const`. [`to_f32`][Self::to_f32] should be preferred
/// in any non-`const` context.
///
/// This conversion is lossless as all 16-bit floating point values can be represented exactly
/// in 32-bit floating point.
#[inline]
#[must_use]
pub const fn to_f32_const(self) -> f32 {
convert::f16_to_f32_fallback(self.0)
}
/// Converts a [`f16`] value into a `f64` value.
///
/// This conversion is lossless as all 16-bit floating point values can be represented exactly
/// in 64-bit floating point.
#[inline]
#[must_use]
pub fn to_f64(self) -> f64 {
convert::f16_to_f64(self.0)
}
/// Converts a [`f16`] value into a `f64` value.
///
/// This function is identical to [`to_f64`][Self::to_f64] except it never uses hardware
/// intrinsics, which allows it to be `const`. [`to_f64`][Self::to_f64] should be preferred
/// in any non-`const` context.
///
/// This conversion is lossless as all 16-bit floating point values can be represented exactly
/// in 64-bit floating point.
#[inline]
#[must_use]
pub const fn to_f64_const(self) -> f64 {
convert::f16_to_f64_fallback(self.0)
}
/// Returns `true` if this value is `NaN` and `false` otherwise.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let nan = f16::NAN;
/// let f = f16::from_f32(7.0_f32);
///
/// assert!(nan.is_nan());
/// assert!(!f.is_nan());
/// ```
#[inline]
#[must_use]
pub const fn is_nan(self) -> bool {
self.0 & 0x7FFFu16 > 0x7C00u16
}
/// Returns `true` if this value is ±∞ and `false`.
/// otherwise.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let f = f16::from_f32(7.0f32);
/// let inf = f16::INFINITY;
/// let neg_inf = f16::NEG_INFINITY;
/// let nan = f16::NAN;
///
/// assert!(!f.is_infinite());
/// assert!(!nan.is_infinite());
///
/// assert!(inf.is_infinite());
/// assert!(neg_inf.is_infinite());
/// ```
#[inline]
#[must_use]
pub const fn is_infinite(self) -> bool {
self.0 & 0x7FFFu16 == 0x7C00u16
}
/// Returns `true` if this number is neither infinite nor `NaN`.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let f = f16::from_f32(7.0f32);
/// let inf = f16::INFINITY;
/// let neg_inf = f16::NEG_INFINITY;
/// let nan = f16::NAN;
///
/// assert!(f.is_finite());
///
/// assert!(!nan.is_finite());
/// assert!(!inf.is_finite());
/// assert!(!neg_inf.is_finite());
/// ```
#[inline]
#[must_use]
pub const fn is_finite(self) -> bool {
self.0 & 0x7C00u16 != 0x7C00u16
}
/// Returns `true` if the number is neither zero, infinite, subnormal, or `NaN`.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let min = f16::MIN_POSITIVE;
/// let max = f16::MAX;
/// let lower_than_min = f16::from_f32(1.0e-10_f32);
/// let zero = f16::from_f32(0.0_f32);
///
/// assert!(min.is_normal());
/// assert!(max.is_normal());
///
/// assert!(!zero.is_normal());
/// assert!(!f16::NAN.is_normal());
/// assert!(!f16::INFINITY.is_normal());
/// // Values between `0` and `min` are Subnormal.
/// assert!(!lower_than_min.is_normal());
/// ```
#[inline]
#[must_use]
pub const fn is_normal(self) -> bool {
let exp = self.0 & 0x7C00u16;
exp != 0x7C00u16 && exp != 0
}
/// Returns the floating point category of the number.
///
/// If only one property is going to be tested, it is generally faster to use the specific
/// predicate instead.
///
/// # Examples
///
/// ```rust
/// use std::num::FpCategory;
/// # use half::prelude::*;
///
/// let num = f16::from_f32(12.4_f32);
/// let inf = f16::INFINITY;
///
/// assert_eq!(num.classify(), FpCategory::Normal);
/// assert_eq!(inf.classify(), FpCategory::Infinite);
/// ```
#[must_use]
pub const fn classify(self) -> FpCategory {
let exp = self.0 & 0x7C00u16;
let man = self.0 & 0x03FFu16;
match (exp, man) {
(0, 0) => FpCategory::Zero,
(0, _) => FpCategory::Subnormal,
(0x7C00u16, 0) => FpCategory::Infinite,
(0x7C00u16, _) => FpCategory::Nan,
_ => FpCategory::Normal,
}
}
/// Returns a number that represents the sign of `self`.
///
/// * `1.0` if the number is positive, `+0.0` or [`INFINITY`][f16::INFINITY]
/// * `-1.0` if the number is negative, `-0.0` or [`NEG_INFINITY`][f16::NEG_INFINITY]
/// * [`NAN`][f16::NAN] if the number is `NaN`
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let f = f16::from_f32(3.5_f32);
///
/// assert_eq!(f.signum(), f16::from_f32(1.0));
/// assert_eq!(f16::NEG_INFINITY.signum(), f16::from_f32(-1.0));
///
/// assert!(f16::NAN.signum().is_nan());
/// ```
#[must_use]
pub const fn signum(self) -> f16 {
if self.is_nan() {
self
} else if self.0 & 0x8000u16 != 0 {
Self::NEG_ONE
} else {
Self::ONE
}
}
/// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaNs` with a
/// positive sign bit and +∞.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let nan = f16::NAN;
/// let f = f16::from_f32(7.0_f32);
/// let g = f16::from_f32(-7.0_f32);
///
/// assert!(f.is_sign_positive());
/// assert!(!g.is_sign_positive());
/// // `NaN` can be either positive or negative
/// assert!(nan.is_sign_positive() != nan.is_sign_negative());
/// ```
#[inline]
#[must_use]
pub const fn is_sign_positive(self) -> bool {
self.0 & 0x8000u16 == 0
}
/// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaNs` with a
/// negative sign bit and −∞.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let nan = f16::NAN;
/// let f = f16::from_f32(7.0f32);
/// let g = f16::from_f32(-7.0f32);
///
/// assert!(!f.is_sign_negative());
/// assert!(g.is_sign_negative());
/// // `NaN` can be either positive or negative
/// assert!(nan.is_sign_positive() != nan.is_sign_negative());
/// ```
#[inline]
#[must_use]
pub const fn is_sign_negative(self) -> bool {
self.0 & 0x8000u16 != 0
}
/// Returns a number composed of the magnitude of `self` and the sign of `sign`.
///
/// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
/// If `self` is NaN, then NaN with the sign of `sign` is returned.
///
/// # Examples
///
/// ```
/// # use half::prelude::*;
/// let f = f16::from_f32(3.5);
///
/// assert_eq!(f.copysign(f16::from_f32(0.42)), f16::from_f32(3.5));
/// assert_eq!(f.copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5));
/// assert_eq!((-f).copysign(f16::from_f32(0.42)), f16::from_f32(3.5));
/// assert_eq!((-f).copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5));
///
/// assert!(f16::NAN.copysign(f16::from_f32(1.0)).is_nan());
/// ```
#[inline]
#[must_use]
pub const fn copysign(self, sign: f16) -> f16 {
f16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16))
}
/// Returns the maximum of the two numbers.
///
/// If one of the arguments is NaN, then the other argument is returned.
///
/// # Examples
///
/// ```
/// # use half::prelude::*;
/// let x = f16::from_f32(1.0);
/// let y = f16::from_f32(2.0);
///
/// assert_eq!(x.max(y), y);
/// ```
#[inline]
#[must_use]
pub fn max(self, other: f16) -> f16 {
if other > self && !other.is_nan() {
other
} else {
self
}
}
/// Returns the minimum of the two numbers.
///
/// If one of the arguments is NaN, then the other argument is returned.
///
/// # Examples
///
/// ```
/// # use half::prelude::*;
/// let x = f16::from_f32(1.0);
/// let y = f16::from_f32(2.0);
///
/// assert_eq!(x.min(y), x);
/// ```
#[inline]
#[must_use]
pub fn min(self, other: f16) -> f16 {
if other < self && !other.is_nan() {
other
} else {
self
}
}
/// Restrict a value to a certain interval unless it is NaN.
///
/// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`.
/// Otherwise this returns `self`.
///
/// Note that this function returns NaN if the initial value was NaN as well.
///
/// # Panics
/// Panics if `min > max`, `min` is NaN, or `max` is NaN.
///
/// # Examples
///
/// ```
/// # use half::prelude::*;
/// assert!(f16::from_f32(-3.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(-2.0));
/// assert!(f16::from_f32(0.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(0.0));
/// assert!(f16::from_f32(2.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(1.0));
/// assert!(f16::NAN.clamp(f16::from_f32(-2.0), f16::from_f32(1.0)).is_nan());
/// ```
#[inline]
#[must_use]
pub fn clamp(self, min: f16, max: f16) -> f16 {
assert!(min <= max);
let mut x = self;
if x < min {
x = min;
}
if x > max {
x = max;
}
x
}
/// Returns the ordering between `self` and `other`.
///
/// Unlike the standard partial comparison between floating point numbers,
/// this comparison always produces an ordering in accordance to
/// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
/// floating point standard. The values are ordered in the following sequence:
///
/// - negative quiet NaN
/// - negative signaling NaN
/// - negative infinity
/// - negative numbers
/// - negative subnormal numbers
/// - negative zero
/// - positive zero
/// - positive subnormal numbers
/// - positive numbers
/// - positive infinity
/// - positive signaling NaN
/// - positive quiet NaN.
///
/// The ordering established by this function does not always agree with the
/// [`PartialOrd`] and [`PartialEq`] implementations of `f16`. For example,
/// they consider negative and positive zero equal, while `total_cmp`
/// doesn't.
///
/// The interpretation of the signaling NaN bit follows the definition in
/// the IEEE 754 standard, which may not match the interpretation by some of
/// the older, non-conformant (e.g. MIPS) hardware implementations.
///
/// # Examples
/// ```
/// # use half::f16;
/// let mut v: Vec<f16> = vec![];
/// v.push(f16::ONE);
/// v.push(f16::INFINITY);
/// v.push(f16::NEG_INFINITY);
/// v.push(f16::NAN);
/// v.push(f16::MAX_SUBNORMAL);
/// v.push(-f16::MAX_SUBNORMAL);
/// v.push(f16::ZERO);
/// v.push(f16::NEG_ZERO);
/// v.push(f16::NEG_ONE);
/// v.push(f16::MIN_POSITIVE);
///
/// v.sort_by(|a, b| a.total_cmp(&b));
///
/// assert!(v
/// .into_iter()
/// .zip(
/// [
/// f16::NEG_INFINITY,
/// f16::NEG_ONE,
/// -f16::MAX_SUBNORMAL,
/// f16::NEG_ZERO,
/// f16::ZERO,
/// f16::MAX_SUBNORMAL,
/// f16::MIN_POSITIVE,
/// f16::ONE,
/// f16::INFINITY,
/// f16::NAN
/// ]
/// .iter()
/// )
/// .all(|(a, b)| a.to_bits() == b.to_bits()));
/// ```
// Implementation based on: https://doc.rust-lang.org/std/primitive.f32.html#method.total_cmp
#[inline]
#[must_use]
pub fn total_cmp(&self, other: &Self) -> Ordering {
let mut left = self.to_bits() as i16;
let mut right = other.to_bits() as i16;
left ^= (((left >> 15) as u16) >> 1) as i16;
right ^= (((right >> 15) as u16) >> 1) as i16;
left.cmp(&right)
}
/// Approximate number of [`f16`] significant digits in base 10
pub const DIGITS: u32 = 3;
/// [`f16`]
/// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value
///
/// This is the difference between 1.0 and the next largest representable number.
pub const EPSILON: f16 = f16(0x1400u16);
/// [`f16`] positive Infinity (+∞)
pub const INFINITY: f16 = f16(0x7C00u16);
/// Number of [`f16`] significant digits in base 2
pub const MANTISSA_DIGITS: u32 = 11;
/// Largest finite [`f16`] value
pub const MAX: f16 = f16(0x7BFF);
/// Maximum possible [`f16`] power of 10 exponent
pub const MAX_10_EXP: i32 = 4;
/// Maximum possible [`f16`] power of 2 exponent
pub const MAX_EXP: i32 = 16;
/// Smallest finite [`f16`] value
pub const MIN: f16 = f16(0xFBFF);
/// Minimum possible normal [`f16`] power of 10 exponent
pub const MIN_10_EXP: i32 = -4;
/// One greater than the minimum possible normal [`f16`] power of 2 exponent
pub const MIN_EXP: i32 = -13;
/// Smallest positive normal [`f16`] value
pub const MIN_POSITIVE: f16 = f16(0x0400u16);
/// [`f16`] Not a Number (NaN)
pub const NAN: f16 = f16(0x7E00u16);
/// [`f16`] negative infinity (-∞)
pub const NEG_INFINITY: f16 = f16(0xFC00u16);
/// The radix or base of the internal representation of [`f16`]
pub const RADIX: u32 = 2;
/// Minimum positive subnormal [`f16`] value
pub const MIN_POSITIVE_SUBNORMAL: f16 = f16(0x0001u16);
/// Maximum subnormal [`f16`] value
pub const MAX_SUBNORMAL: f16 = f16(0x03FFu16);
/// [`f16`] 1
pub const ONE: f16 = f16(0x3C00u16);
/// [`f16`] 0
pub const ZERO: f16 = f16(0x0000u16);
/// [`f16`] -0
pub const NEG_ZERO: f16 = f16(0x8000u16);
/// [`f16`] -1
pub const NEG_ONE: f16 = f16(0xBC00u16);
/// [`f16`] Euler's number ()
pub const E: f16 = f16(0x4170u16);
/// [`f16`] Archimedes' constant (π)
pub const PI: f16 = f16(0x4248u16);
/// [`f16`] 1/π
pub const FRAC_1_PI: f16 = f16(0x3518u16);
/// [`f16`] 1/√2
pub const FRAC_1_SQRT_2: f16 = f16(0x39A8u16);
/// [`f16`] 2/π
pub const FRAC_2_PI: f16 = f16(0x3918u16);
/// [`f16`] 2/√π
pub const FRAC_2_SQRT_PI: f16 = f16(0x3C83u16);
/// [`f16`] π/2
pub const FRAC_PI_2: f16 = f16(0x3E48u16);
/// [`f16`] π/3
pub const FRAC_PI_3: f16 = f16(0x3C30u16);
/// [`f16`] π/4
pub const FRAC_PI_4: f16 = f16(0x3A48u16);
/// [`f16`] π/6
pub const FRAC_PI_6: f16 = f16(0x3830u16);
/// [`f16`] π/8
pub const FRAC_PI_8: f16 = f16(0x3648u16);
/// [`f16`] 𝗅𝗇 10
pub const LN_10: f16 = f16(0x409Bu16);
/// [`f16`] 𝗅𝗇 2
pub const LN_2: f16 = f16(0x398Cu16);
/// [`f16`] 𝗅𝗈𝗀₁₀ℯ
pub const LOG10_E: f16 = f16(0x36F3u16);
/// [`f16`] 𝗅𝗈𝗀₁₀2
pub const LOG10_2: f16 = f16(0x34D1u16);
/// [`f16`] 𝗅𝗈𝗀₂ℯ
pub const LOG2_E: f16 = f16(0x3DC5u16);
/// [`f16`] 𝗅𝗈𝗀₂10
pub const LOG2_10: f16 = f16(0x42A5u16);
/// [`f16`] √2
pub const SQRT_2: f16 = f16(0x3DA8u16);
}
impl From<f16> for f32 {
#[inline]
fn from(x: f16) -> f32 {
x.to_f32()
}
}
impl From<f16> for f64 {
#[inline]
fn from(x: f16) -> f64 {
x.to_f64()
}
}
impl From<i8> for f16 {
#[inline]
fn from(x: i8) -> f16 {
// Convert to f32, then to f16
f16::from_f32(f32::from(x))
}
}
impl From<u8> for f16 {
#[inline]
fn from(x: u8) -> f16 {
// Convert to f32, then to f16
f16::from_f32(f32::from(x))
}
}
impl PartialEq for f16 {
fn eq(&self, other: &f16) -> bool {
if self.is_nan() || other.is_nan() {
false
} else {
(self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0)
}
}
}
impl PartialOrd for f16 {
fn partial_cmp(&self, other: &f16) -> Option<Ordering> {
if self.is_nan() || other.is_nan() {
None
} else {
let neg = self.0 & 0x8000u16 != 0;
let other_neg = other.0 & 0x8000u16 != 0;
match (neg, other_neg) {
(false, false) => Some(self.0.cmp(&other.0)),
(false, true) => {
if (self.0 | other.0) & 0x7FFFu16 == 0 {
Some(Ordering::Equal)
} else {
Some(Ordering::Greater)
}
}
(true, false) => {
if (self.0 | other.0) & 0x7FFFu16 == 0 {
Some(Ordering::Equal)
} else {
Some(Ordering::Less)
}
}
(true, true) => Some(other.0.cmp(&self.0)),
}
}
}
fn lt(&self, other: &f16) -> bool {
if self.is_nan() || other.is_nan() {
false
} else {
let neg = self.0 & 0x8000u16 != 0;
let other_neg = other.0 & 0x8000u16 != 0;
match (neg, other_neg) {
(false, false) => self.0 < other.0,
(false, true) => false,
(true, false) => (self.0 | other.0) & 0x7FFFu16 != 0,
(true, true) => self.0 > other.0,
}
}
}
fn le(&self, other: &f16) -> bool {
if self.is_nan() || other.is_nan() {
false
} else {
let neg = self.0 & 0x8000u16 != 0;
let other_neg = other.0 & 0x8000u16 != 0;
match (neg, other_neg) {
(false, false) => self.0 <= other.0,
(false, true) => (self.0 | other.0) & 0x7FFFu16 == 0,
(true, false) => true,
(true, true) => self.0 >= other.0,
}
}
}
fn gt(&self, other: &f16) -> bool {
if self.is_nan() || other.is_nan() {
false
} else {
let neg = self.0 & 0x8000u16 != 0;
let other_neg = other.0 & 0x8000u16 != 0;
match (neg, other_neg) {
(false, false) => self.0 > other.0,
(false, true) => (self.0 | other.0) & 0x7FFFu16 != 0,
(true, false) => false,
(true, true) => self.0 < other.0,
}
}
}
fn ge(&self, other: &f16) -> bool {
if self.is_nan() || other.is_nan() {
false
} else {
let neg = self.0 & 0x8000u16 != 0;
let other_neg = other.0 & 0x8000u16 != 0;
match (neg, other_neg) {
(false, false) => self.0 >= other.0,
(false, true) => true,
(true, false) => (self.0 | other.0) & 0x7FFFu16 == 0,
(true, true) => self.0 <= other.0,
}
}
}
}
#[cfg(not(target_arch = "spirv"))]
impl FromStr for f16 {
type Err = ParseFloatError;
fn from_str(src: &str) -> Result<f16, ParseFloatError> {
f32::from_str(src).map(f16::from_f32)
}
}
#[cfg(not(target_arch = "spirv"))]
impl Debug for f16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:?}", self.to_f32())
}
}
#[cfg(not(target_arch = "spirv"))]
impl Display for f16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{}", self.to_f32())
}
}
#[cfg(not(target_arch = "spirv"))]
impl LowerExp for f16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:e}", self.to_f32())
}
}
#[cfg(not(target_arch = "spirv"))]
impl UpperExp for f16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:E}", self.to_f32())
}
}
#[cfg(not(target_arch = "spirv"))]
impl Binary for f16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:b}", self.0)
}
}
#[cfg(not(target_arch = "spirv"))]
impl Octal for f16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:o}", self.0)
}
}
#[cfg(not(target_arch = "spirv"))]
impl LowerHex for f16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:x}", self.0)
}
}
#[cfg(not(target_arch = "spirv"))]
impl UpperHex for f16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:X}", self.0)
}
}
impl Neg for f16 {
type Output = Self;
#[inline]
fn neg(self) -> Self::Output {
Self(self.0 ^ 0x8000)
}
}
impl Neg for &f16 {
type Output = <f16 as Neg>::Output;
#[inline]
fn neg(self) -> Self::Output {
Neg::neg(*self)
}
}
impl Add for f16 {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self::Output {
Self::from_f32(Self::to_f32(self) + Self::to_f32(rhs))
}
}
impl Add<&f16> for f16 {
type Output = <f16 as Add<f16>>::Output;
#[inline]
fn add(self, rhs: &f16) -> Self::Output {
self.add(*rhs)
}
}
impl Add<&f16> for &f16 {
type Output = <f16 as Add<f16>>::Output;
#[inline]
fn add(self, rhs: &f16) -> Self::Output {
(*self).add(*rhs)
}
}
impl Add<f16> for &f16 {
type Output = <f16 as Add<f16>>::Output;
#[inline]
fn add(self, rhs: f16) -> Self::Output {
(*self).add(rhs)
}
}
impl AddAssign for f16 {
#[inline]
fn add_assign(&mut self, rhs: Self) {
*self = (*self).add(rhs);
}
}
impl AddAssign<&f16> for f16 {
#[inline]
fn add_assign(&mut self, rhs: &f16) {
*self = (*self).add(rhs);
}
}
impl Sub for f16 {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self::Output {
Self::from_f32(Self::to_f32(self) - Self::to_f32(rhs))
}
}
impl Sub<&f16> for f16 {
type Output = <f16 as Sub<f16>>::Output;
#[inline]
fn sub(self, rhs: &f16) -> Self::Output {
self.sub(*rhs)
}
}
impl Sub<&f16> for &f16 {
type Output = <f16 as Sub<f16>>::Output;
#[inline]
fn sub(self, rhs: &f16) -> Self::Output {
(*self).sub(*rhs)
}
}
impl Sub<f16> for &f16 {
type Output = <f16 as Sub<f16>>::Output;
#[inline]
fn sub(self, rhs: f16) -> Self::Output {
(*self).sub(rhs)
}
}
impl SubAssign for f16 {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
*self = (*self).sub(rhs);
}
}
impl SubAssign<&f16> for f16 {
#[inline]
fn sub_assign(&mut self, rhs: &f16) {
*self = (*self).sub(rhs);
}
}
impl Mul for f16 {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self::Output {
Self::from_f32(Self::to_f32(self) * Self::to_f32(rhs))
}
}
impl Mul<&f16> for f16 {
type Output = <f16 as Mul<f16>>::Output;
#[inline]
fn mul(self, rhs: &f16) -> Self::Output {
self.mul(*rhs)
}
}
impl Mul<&f16> for &f16 {
type Output = <f16 as Mul<f16>>::Output;
#[inline]
fn mul(self, rhs: &f16) -> Self::Output {
(*self).mul(*rhs)
}
}
impl Mul<f16> for &f16 {
type Output = <f16 as Mul<f16>>::Output;
#[inline]
fn mul(self, rhs: f16) -> Self::Output {
(*self).mul(rhs)
}
}
impl MulAssign for f16 {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
*self = (*self).mul(rhs);
}
}
impl MulAssign<&f16> for f16 {
#[inline]
fn mul_assign(&mut self, rhs: &f16) {
*self = (*self).mul(rhs);
}
}
impl Div for f16 {
type Output = Self;
#[inline]
fn div(self, rhs: Self) -> Self::Output {
Self::from_f32(Self::to_f32(self) / Self::to_f32(rhs))
}
}
impl Div<&f16> for f16 {
type Output = <f16 as Div<f16>>::Output;
#[inline]
fn div(self, rhs: &f16) -> Self::Output {
self.div(*rhs)
}
}
impl Div<&f16> for &f16 {
type Output = <f16 as Div<f16>>::Output;
#[inline]
fn div(self, rhs: &f16) -> Self::Output {
(*self).div(*rhs)
}
}
impl Div<f16> for &f16 {
type Output = <f16 as Div<f16>>::Output;
#[inline]
fn div(self, rhs: f16) -> Self::Output {
(*self).div(rhs)
}
}
impl DivAssign for f16 {
#[inline]
fn div_assign(&mut self, rhs: Self) {
*self = (*self).div(rhs);
}
}
impl DivAssign<&f16> for f16 {
#[inline]
fn div_assign(&mut self, rhs: &f16) {
*self = (*self).div(rhs);
}
}
impl Rem for f16 {
type Output = Self;
#[inline]
fn rem(self, rhs: Self) -> Self::Output {
Self::from_f32(Self::to_f32(self) % Self::to_f32(rhs))
}
}
impl Rem<&f16> for f16 {
type Output = <f16 as Rem<f16>>::Output;
#[inline]
fn rem(self, rhs: &f16) -> Self::Output {
self.rem(*rhs)
}
}
impl Rem<&f16> for &f16 {
type Output = <f16 as Rem<f16>>::Output;
#[inline]
fn rem(self, rhs: &f16) -> Self::Output {
(*self).rem(*rhs)
}
}
impl Rem<f16> for &f16 {
type Output = <f16 as Rem<f16>>::Output;
#[inline]
fn rem(self, rhs: f16) -> Self::Output {
(*self).rem(rhs)
}
}
impl RemAssign for f16 {
#[inline]
fn rem_assign(&mut self, rhs: Self) {
*self = (*self).rem(rhs);
}
}
impl RemAssign<&f16> for f16 {
#[inline]
fn rem_assign(&mut self, rhs: &f16) {
*self = (*self).rem(rhs);
}
}
impl Product for f16 {
#[inline]
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
f16::from_f32(iter.map(|f| f.to_f32()).product())
}
}
impl<'a> Product<&'a f16> for f16 {
#[inline]
fn product<I: Iterator<Item = &'a f16>>(iter: I) -> Self {
f16::from_f32(iter.map(|f| f.to_f32()).product())
}
}
impl Sum for f16 {
#[inline]
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
f16::from_f32(iter.map(|f| f.to_f32()).sum())
}
}
impl<'a> Sum<&'a f16> for f16 {
#[inline]
fn sum<I: Iterator<Item = &'a f16>>(iter: I) -> Self {
f16::from_f32(iter.map(|f| f.to_f32()).product())
}
}
#[allow(
clippy::cognitive_complexity,
clippy::float_cmp,
clippy::neg_cmp_op_on_partial_ord
)]
#[cfg(test)]
mod test {
use super::*;
use core::cmp::Ordering;
#[cfg(feature = "num-traits")]
use num_traits::{AsPrimitive, FromPrimitive, ToPrimitive};
use quickcheck_macros::quickcheck;
#[cfg(feature = "num-traits")]
#[test]
fn as_primitive() {
let two = f16::from_f32(2.0);
assert_eq!(<i32 as AsPrimitive<f16>>::as_(2), two);
assert_eq!(<f16 as AsPrimitive<i32>>::as_(two), 2);
assert_eq!(<f32 as AsPrimitive<f16>>::as_(2.0), two);
assert_eq!(<f16 as AsPrimitive<f32>>::as_(two), 2.0);
assert_eq!(<f64 as AsPrimitive<f16>>::as_(2.0), two);
assert_eq!(<f16 as AsPrimitive<f64>>::as_(two), 2.0);
}
#[cfg(feature = "num-traits")]
#[test]
fn to_primitive() {
let two = f16::from_f32(2.0);
assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32);
assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32);
assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64);
}
#[cfg(feature = "num-traits")]
#[test]
fn from_primitive() {
let two = f16::from_f32(2.0);
assert_eq!(<f16 as FromPrimitive>::from_i32(2).unwrap(), two);
assert_eq!(<f16 as FromPrimitive>::from_f32(2.0).unwrap(), two);
assert_eq!(<f16 as FromPrimitive>::from_f64(2.0).unwrap(), two);
}
#[test]
fn test_f16_consts() {
// DIGITS
let digits = ((f16::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32;
assert_eq!(f16::DIGITS, digits);
// sanity check to show test is good
let digits32 = ((core::f32::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32;
assert_eq!(core::f32::DIGITS, digits32);
// EPSILON
let one = f16::from_f32(1.0);
let one_plus_epsilon = f16::from_bits(one.to_bits() + 1);
let epsilon = f16::from_f32(one_plus_epsilon.to_f32() - 1.0);
assert_eq!(f16::EPSILON, epsilon);
// sanity check to show test is good
let one_plus_epsilon32 = f32::from_bits(1.0f32.to_bits() + 1);
let epsilon32 = one_plus_epsilon32 - 1f32;
assert_eq!(core::f32::EPSILON, epsilon32);
// MAX, MIN and MIN_POSITIVE
let max = f16::from_bits(f16::INFINITY.to_bits() - 1);
let min = f16::from_bits(f16::NEG_INFINITY.to_bits() - 1);
let min_pos = f16::from_f32(2f32.powi(f16::MIN_EXP - 1));
assert_eq!(f16::MAX, max);
assert_eq!(f16::MIN, min);
assert_eq!(f16::MIN_POSITIVE, min_pos);
// sanity check to show test is good
let max32 = f32::from_bits(core::f32::INFINITY.to_bits() - 1);
let min32 = f32::from_bits(core::f32::NEG_INFINITY.to_bits() - 1);
let min_pos32 = 2f32.powi(core::f32::MIN_EXP - 1);
assert_eq!(core::f32::MAX, max32);
assert_eq!(core::f32::MIN, min32);
assert_eq!(core::f32::MIN_POSITIVE, min_pos32);
// MIN_10_EXP and MAX_10_EXP
let ten_to_min = 10f32.powi(f16::MIN_10_EXP);
assert!(ten_to_min / 10.0 < f16::MIN_POSITIVE.to_f32());
assert!(ten_to_min > f16::MIN_POSITIVE.to_f32());
let ten_to_max = 10f32.powi(f16::MAX_10_EXP);
assert!(ten_to_max < f16::MAX.to_f32());
assert!(ten_to_max * 10.0 > f16::MAX.to_f32());
// sanity check to show test is good
let ten_to_min32 = 10f64.powi(core::f32::MIN_10_EXP);
assert!(ten_to_min32 / 10.0 < f64::from(core::f32::MIN_POSITIVE));
assert!(ten_to_min32 > f64::from(core::f32::MIN_POSITIVE));
let ten_to_max32 = 10f64.powi(core::f32::MAX_10_EXP);
assert!(ten_to_max32 < f64::from(core::f32::MAX));
assert!(ten_to_max32 * 10.0 > f64::from(core::f32::MAX));
}
#[test]
fn test_f16_consts_from_f32() {
let one = f16::from_f32(1.0);
let zero = f16::from_f32(0.0);
let neg_zero = f16::from_f32(-0.0);
let neg_one = f16::from_f32(-1.0);
let inf = f16::from_f32(core::f32::INFINITY);
let neg_inf = f16::from_f32(core::f32::NEG_INFINITY);
let nan = f16::from_f32(core::f32::NAN);
assert_eq!(f16::ONE, one);
assert_eq!(f16::ZERO, zero);
assert!(zero.is_sign_positive());
assert_eq!(f16::NEG_ZERO, neg_zero);
assert!(neg_zero.is_sign_negative());
assert_eq!(f16::NEG_ONE, neg_one);
assert!(neg_one.is_sign_negative());
assert_eq!(f16::INFINITY, inf);
assert_eq!(f16::NEG_INFINITY, neg_inf);
assert!(nan.is_nan());
assert!(f16::NAN.is_nan());
let e = f16::from_f32(core::f32::consts::E);
let pi = f16::from_f32(core::f32::consts::PI);
let frac_1_pi = f16::from_f32(core::f32::consts::FRAC_1_PI);
let frac_1_sqrt_2 = f16::from_f32(core::f32::consts::FRAC_1_SQRT_2);
let frac_2_pi = f16::from_f32(core::f32::consts::FRAC_2_PI);
let frac_2_sqrt_pi = f16::from_f32(core::f32::consts::FRAC_2_SQRT_PI);
let frac_pi_2 = f16::from_f32(core::f32::consts::FRAC_PI_2);
let frac_pi_3 = f16::from_f32(core::f32::consts::FRAC_PI_3);
let frac_pi_4 = f16::from_f32(core::f32::consts::FRAC_PI_4);
let frac_pi_6 = f16::from_f32(core::f32::consts::FRAC_PI_6);
let frac_pi_8 = f16::from_f32(core::f32::consts::FRAC_PI_8);
let ln_10 = f16::from_f32(core::f32::consts::LN_10);
let ln_2 = f16::from_f32(core::f32::consts::LN_2);
let log10_e = f16::from_f32(core::f32::consts::LOG10_E);
// core::f32::consts::LOG10_2 requires rustc 1.43.0
let log10_2 = f16::from_f32(2f32.log10());
let log2_e = f16::from_f32(core::f32::consts::LOG2_E);
// core::f32::consts::LOG2_10 requires rustc 1.43.0
let log2_10 = f16::from_f32(10f32.log2());
let sqrt_2 = f16::from_f32(core::f32::consts::SQRT_2);
assert_eq!(f16::E, e);
assert_eq!(f16::PI, pi);
assert_eq!(f16::FRAC_1_PI, frac_1_pi);
assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2);
assert_eq!(f16::FRAC_2_PI, frac_2_pi);
assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
assert_eq!(f16::FRAC_PI_2, frac_pi_2);
assert_eq!(f16::FRAC_PI_3, frac_pi_3);
assert_eq!(f16::FRAC_PI_4, frac_pi_4);
assert_eq!(f16::FRAC_PI_6, frac_pi_6);
assert_eq!(f16::FRAC_PI_8, frac_pi_8);
assert_eq!(f16::LN_10, ln_10);
assert_eq!(f16::LN_2, ln_2);
assert_eq!(f16::LOG10_E, log10_e);
assert_eq!(f16::LOG10_2, log10_2);
assert_eq!(f16::LOG2_E, log2_e);
assert_eq!(f16::LOG2_10, log2_10);
assert_eq!(f16::SQRT_2, sqrt_2);
}
#[test]
fn test_f16_consts_from_f64() {
let one = f16::from_f64(1.0);
let zero = f16::from_f64(0.0);
let neg_zero = f16::from_f64(-0.0);
let inf = f16::from_f64(core::f64::INFINITY);
let neg_inf = f16::from_f64(core::f64::NEG_INFINITY);
let nan = f16::from_f64(core::f64::NAN);
assert_eq!(f16::ONE, one);
assert_eq!(f16::ZERO, zero);
assert!(zero.is_sign_positive());
assert_eq!(f16::NEG_ZERO, neg_zero);
assert!(neg_zero.is_sign_negative());
assert_eq!(f16::INFINITY, inf);
assert_eq!(f16::NEG_INFINITY, neg_inf);
assert!(nan.is_nan());
assert!(f16::NAN.is_nan());
let e = f16::from_f64(core::f64::consts::E);
let pi = f16::from_f64(core::f64::consts::PI);
let frac_1_pi = f16::from_f64(core::f64::consts::FRAC_1_PI);
let frac_1_sqrt_2 = f16::from_f64(core::f64::consts::FRAC_1_SQRT_2);
let frac_2_pi = f16::from_f64(core::f64::consts::FRAC_2_PI);
let frac_2_sqrt_pi = f16::from_f64(core::f64::consts::FRAC_2_SQRT_PI);
let frac_pi_2 = f16::from_f64(core::f64::consts::FRAC_PI_2);
let frac_pi_3 = f16::from_f64(core::f64::consts::FRAC_PI_3);
let frac_pi_4 = f16::from_f64(core::f64::consts::FRAC_PI_4);
let frac_pi_6 = f16::from_f64(core::f64::consts::FRAC_PI_6);
let frac_pi_8 = f16::from_f64(core::f64::consts::FRAC_PI_8);
let ln_10 = f16::from_f64(core::f64::consts::LN_10);
let ln_2 = f16::from_f64(core::f64::consts::LN_2);
let log10_e = f16::from_f64(core::f64::consts::LOG10_E);
// core::f64::consts::LOG10_2 requires rustc 1.43.0
let log10_2 = f16::from_f64(2f64.log10());
let log2_e = f16::from_f64(core::f64::consts::LOG2_E);
// core::f64::consts::LOG2_10 requires rustc 1.43.0
let log2_10 = f16::from_f64(10f64.log2());
let sqrt_2 = f16::from_f64(core::f64::consts::SQRT_2);
assert_eq!(f16::E, e);
assert_eq!(f16::PI, pi);
assert_eq!(f16::FRAC_1_PI, frac_1_pi);
assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2);
assert_eq!(f16::FRAC_2_PI, frac_2_pi);
assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
assert_eq!(f16::FRAC_PI_2, frac_pi_2);
assert_eq!(f16::FRAC_PI_3, frac_pi_3);
assert_eq!(f16::FRAC_PI_4, frac_pi_4);
assert_eq!(f16::FRAC_PI_6, frac_pi_6);
assert_eq!(f16::FRAC_PI_8, frac_pi_8);
assert_eq!(f16::LN_10, ln_10);
assert_eq!(f16::LN_2, ln_2);
assert_eq!(f16::LOG10_E, log10_e);
assert_eq!(f16::LOG10_2, log10_2);
assert_eq!(f16::LOG2_E, log2_e);
assert_eq!(f16::LOG2_10, log2_10);
assert_eq!(f16::SQRT_2, sqrt_2);
}
#[test]
fn test_nan_conversion_to_smaller() {
let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64);
let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64);
let nan32 = f32::from_bits(0x7F80_0001u32);
let neg_nan32 = f32::from_bits(0xFF80_0001u32);
let nan32_from_64 = nan64 as f32;
let neg_nan32_from_64 = neg_nan64 as f32;
let nan16_from_64 = f16::from_f64(nan64);
let neg_nan16_from_64 = f16::from_f64(neg_nan64);
let nan16_from_32 = f16::from_f32(nan32);
let neg_nan16_from_32 = f16::from_f32(neg_nan32);
assert!(nan64.is_nan() && nan64.is_sign_positive());
assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative());
assert!(nan32.is_nan() && nan32.is_sign_positive());
assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
assert!(nan32_from_64.is_nan() && nan32_from_64.is_sign_positive());
assert!(neg_nan32_from_64.is_nan() && neg_nan32_from_64.is_sign_negative());
assert!(nan16_from_64.is_nan() && nan16_from_64.is_sign_positive());
assert!(neg_nan16_from_64.is_nan() && neg_nan16_from_64.is_sign_negative());
assert!(nan16_from_32.is_nan() && nan16_from_32.is_sign_positive());
assert!(neg_nan16_from_32.is_nan() && neg_nan16_from_32.is_sign_negative());
}
#[test]
fn test_nan_conversion_to_larger() {
let nan16 = f16::from_bits(0x7C01u16);
let neg_nan16 = f16::from_bits(0xFC01u16);
let nan32 = f32::from_bits(0x7F80_0001u32);
let neg_nan32 = f32::from_bits(0xFF80_0001u32);
let nan32_from_16 = f32::from(nan16);
let neg_nan32_from_16 = f32::from(neg_nan16);
let nan64_from_16 = f64::from(nan16);
let neg_nan64_from_16 = f64::from(neg_nan16);
let nan64_from_32 = f64::from(nan32);
let neg_nan64_from_32 = f64::from(neg_nan32);
assert!(nan16.is_nan() && nan16.is_sign_positive());
assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative());
assert!(nan32.is_nan() && nan32.is_sign_positive());
assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
assert!(nan32_from_16.is_nan() && nan32_from_16.is_sign_positive());
assert!(neg_nan32_from_16.is_nan() && neg_nan32_from_16.is_sign_negative());
assert!(nan64_from_16.is_nan() && nan64_from_16.is_sign_positive());
assert!(neg_nan64_from_16.is_nan() && neg_nan64_from_16.is_sign_negative());
assert!(nan64_from_32.is_nan() && nan64_from_32.is_sign_positive());
assert!(neg_nan64_from_32.is_nan() && neg_nan64_from_32.is_sign_negative());
}
#[test]
fn test_f16_to_f32() {
let f = f16::from_f32(7.0);
assert_eq!(f.to_f32(), 7.0f32);
// 7.1 is NOT exactly representable in 16-bit, it's rounded
let f = f16::from_f32(7.1);
let diff = (f.to_f32() - 7.1f32).abs();
// diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
assert!(diff <= 4.0 * f16::EPSILON.to_f32());
assert_eq!(f16::from_bits(0x0000_0001).to_f32(), 2.0f32.powi(-24));
assert_eq!(f16::from_bits(0x0000_0005).to_f32(), 5.0 * 2.0f32.powi(-24));
assert_eq!(f16::from_bits(0x0000_0001), f16::from_f32(2.0f32.powi(-24)));
assert_eq!(
f16::from_bits(0x0000_0005),
f16::from_f32(5.0 * 2.0f32.powi(-24))
);
}
#[test]
fn test_f16_to_f64() {
let f = f16::from_f64(7.0);
assert_eq!(f.to_f64(), 7.0f64);
// 7.1 is NOT exactly representable in 16-bit, it's rounded
let f = f16::from_f64(7.1);
let diff = (f.to_f64() - 7.1f64).abs();
// diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
assert!(diff <= 4.0 * f16::EPSILON.to_f64());
assert_eq!(f16::from_bits(0x0000_0001).to_f64(), 2.0f64.powi(-24));
assert_eq!(f16::from_bits(0x0000_0005).to_f64(), 5.0 * 2.0f64.powi(-24));
assert_eq!(f16::from_bits(0x0000_0001), f16::from_f64(2.0f64.powi(-24)));
assert_eq!(
f16::from_bits(0x0000_0005),
f16::from_f64(5.0 * 2.0f64.powi(-24))
);
}
#[test]
fn test_comparisons() {
let zero = f16::from_f64(0.0);
let one = f16::from_f64(1.0);
let neg_zero = f16::from_f64(-0.0);
let neg_one = f16::from_f64(-1.0);
assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal));
assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal));
assert!(zero == neg_zero);
assert!(neg_zero == zero);
assert!(!(zero != neg_zero));
assert!(!(neg_zero != zero));
assert!(!(zero < neg_zero));
assert!(!(neg_zero < zero));
assert!(zero <= neg_zero);
assert!(neg_zero <= zero);
assert!(!(zero > neg_zero));
assert!(!(neg_zero > zero));
assert!(zero >= neg_zero);
assert!(neg_zero >= zero);
assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater));
assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less));
assert!(!(one == neg_zero));
assert!(!(neg_zero == one));
assert!(one != neg_zero);
assert!(neg_zero != one);
assert!(!(one < neg_zero));
assert!(neg_zero < one);
assert!(!(one <= neg_zero));
assert!(neg_zero <= one);
assert!(one > neg_zero);
assert!(!(neg_zero > one));
assert!(one >= neg_zero);
assert!(!(neg_zero >= one));
assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater));
assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less));
assert!(!(one == neg_one));
assert!(!(neg_one == one));
assert!(one != neg_one);
assert!(neg_one != one);
assert!(!(one < neg_one));
assert!(neg_one < one);
assert!(!(one <= neg_one));
assert!(neg_one <= one);
assert!(one > neg_one);
assert!(!(neg_one > one));
assert!(one >= neg_one);
assert!(!(neg_one >= one));
}
#[test]
#[allow(clippy::erasing_op, clippy::identity_op)]
fn round_to_even_f32() {
// smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24
let min_sub = f16::from_bits(1);
let min_sub_f = (-24f32).exp2();
assert_eq!(f16::from_f32(min_sub_f).to_bits(), min_sub.to_bits());
assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits());
// 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding)
// 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even)
// 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up)
assert_eq!(
f16::from_f32(min_sub_f * 0.49).to_bits(),
min_sub.to_bits() * 0
);
assert_eq!(
f16::from_f32(min_sub_f * 0.50).to_bits(),
min_sub.to_bits() * 0
);
assert_eq!(
f16::from_f32(min_sub_f * 0.51).to_bits(),
min_sub.to_bits() * 1
);
// 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding)
// 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even)
// 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up)
assert_eq!(
f16::from_f32(min_sub_f * 1.49).to_bits(),
min_sub.to_bits() * 1
);
assert_eq!(
f16::from_f32(min_sub_f * 1.50).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
f16::from_f32(min_sub_f * 1.51).to_bits(),
min_sub.to_bits() * 2
);
// 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding)
// 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even)
// 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up)
assert_eq!(
f16::from_f32(min_sub_f * 2.49).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
f16::from_f32(min_sub_f * 2.50).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
f16::from_f32(min_sub_f * 2.51).to_bits(),
min_sub.to_bits() * 3
);
assert_eq!(
f16::from_f32(2000.49f32).to_bits(),
f16::from_f32(2000.0).to_bits()
);
assert_eq!(
f16::from_f32(2000.50f32).to_bits(),
f16::from_f32(2000.0).to_bits()
);
assert_eq!(
f16::from_f32(2000.51f32).to_bits(),
f16::from_f32(2001.0).to_bits()
);
assert_eq!(
f16::from_f32(2001.49f32).to_bits(),
f16::from_f32(2001.0).to_bits()
);
assert_eq!(
f16::from_f32(2001.50f32).to_bits(),
f16::from_f32(2002.0).to_bits()
);
assert_eq!(
f16::from_f32(2001.51f32).to_bits(),
f16::from_f32(2002.0).to_bits()
);
assert_eq!(
f16::from_f32(2002.49f32).to_bits(),
f16::from_f32(2002.0).to_bits()
);
assert_eq!(
f16::from_f32(2002.50f32).to_bits(),
f16::from_f32(2002.0).to_bits()
);
assert_eq!(
f16::from_f32(2002.51f32).to_bits(),
f16::from_f32(2003.0).to_bits()
);
}
#[test]
#[allow(clippy::erasing_op, clippy::identity_op)]
fn round_to_even_f64() {
// smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24
let min_sub = f16::from_bits(1);
let min_sub_f = (-24f64).exp2();
assert_eq!(f16::from_f64(min_sub_f).to_bits(), min_sub.to_bits());
assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits());
// 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding)
// 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even)
// 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up)
assert_eq!(
f16::from_f64(min_sub_f * 0.49).to_bits(),
min_sub.to_bits() * 0
);
assert_eq!(
f16::from_f64(min_sub_f * 0.50).to_bits(),
min_sub.to_bits() * 0
);
assert_eq!(
f16::from_f64(min_sub_f * 0.51).to_bits(),
min_sub.to_bits() * 1
);
// 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding)
// 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even)
// 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up)
assert_eq!(
f16::from_f64(min_sub_f * 1.49).to_bits(),
min_sub.to_bits() * 1
);
assert_eq!(
f16::from_f64(min_sub_f * 1.50).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
f16::from_f64(min_sub_f * 1.51).to_bits(),
min_sub.to_bits() * 2
);
// 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding)
// 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even)
// 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up)
assert_eq!(
f16::from_f64(min_sub_f * 2.49).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
f16::from_f64(min_sub_f * 2.50).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
f16::from_f64(min_sub_f * 2.51).to_bits(),
min_sub.to_bits() * 3
);
assert_eq!(
f16::from_f64(2000.49f64).to_bits(),
f16::from_f64(2000.0).to_bits()
);
assert_eq!(
f16::from_f64(2000.50f64).to_bits(),
f16::from_f64(2000.0).to_bits()
);
assert_eq!(
f16::from_f64(2000.51f64).to_bits(),
f16::from_f64(2001.0).to_bits()
);
assert_eq!(
f16::from_f64(2001.49f64).to_bits(),
f16::from_f64(2001.0).to_bits()
);
assert_eq!(
f16::from_f64(2001.50f64).to_bits(),
f16::from_f64(2002.0).to_bits()
);
assert_eq!(
f16::from_f64(2001.51f64).to_bits(),
f16::from_f64(2002.0).to_bits()
);
assert_eq!(
f16::from_f64(2002.49f64).to_bits(),
f16::from_f64(2002.0).to_bits()
);
assert_eq!(
f16::from_f64(2002.50f64).to_bits(),
f16::from_f64(2002.0).to_bits()
);
assert_eq!(
f16::from_f64(2002.51f64).to_bits(),
f16::from_f64(2003.0).to_bits()
);
}
impl quickcheck::Arbitrary for f16 {
fn arbitrary(g: &mut quickcheck::Gen) -> Self {
f16(u16::arbitrary(g))
}
}
#[quickcheck]
fn qc_roundtrip_f16_f32_is_identity(f: f16) -> bool {
let roundtrip = f16::from_f32(f.to_f32());
if f.is_nan() {
roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
} else {
f.0 == roundtrip.0
}
}
#[quickcheck]
fn qc_roundtrip_f16_f64_is_identity(f: f16) -> bool {
let roundtrip = f16::from_f64(f.to_f64());
if f.is_nan() {
roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
} else {
f.0 == roundtrip.0
}
}
}